Skip to contents

DEPRECATED: This is a simple binary search, no need for a separate function

Usage

slise.explain_find(
  ...,
  lambda1 = 5,
  variables = 4,
  iters = 10,
  treshold = 1e-04
)

Arguments

...

Arguments passed on to slise.explain

X

Matrix of independent variables

Y

Vector of the dependent variable

epsilon

Error tolerance

x

The sample to be explained (or index if y is null)

y

The prediction to be explained (default: NULL)

lambda2

L2 regularisation coefficient (default: 0)

weight

Optional weight vector (default: NULL)

normalise

Preprocess X and Y by scaling, note that epsilon is not scaled (default: FALSE)

logit

Logit transform Y from probabilities to real values (default: FALSE)

initialisation

function that gives the initial alpha and beta, or a list containing the initial alpha and beta (default: slise_initialisation_candidates)

lambda1

the starting value of the search

variables

number of non-zero coefficients

iters

number of search iterations

treshold

treshold for zero coefficient

Value

SLISE object