SLISE Black Box Explainer Use SLISE for explaining predictions made by a black box. BUT with a binary search for sparsity!
Source:R/slise.R
slise.explain_find.Rd
DEPRECATED: This is a simple binary search, no need for a separate function
Arguments
- ...
Arguments passed on to
slise.explain
X
Matrix of independent variables
Y
Vector of the dependent variable
epsilon
Error tolerance
x
The sample to be explained (or index if y is null)
y
The prediction to be explained (default: NULL)
lambda2
L2 regularisation coefficient (default: 0)
weight
Optional weight vector (default: NULL)
normalise
Preprocess X and Y by scaling, note that epsilon is not scaled (default: FALSE)
logit
Logit transform Y from probabilities to real values (default: FALSE)
initialisation
function that gives the initial alpha and beta, or a list containing the initial alpha and beta (default: slise_initialisation_candidates)
- lambda1
the starting value of the search
- variables
number of non-zero coefficients
- iters
number of search iterations
- treshold
treshold for zero coefficient