SLISE Black Box Explainer Use SLISE for explaining predictions made by a black box. BUT with sparsity from a combinatorial search rather than Lasso!
Source:R/slise.R
slise.explain_comb.Rd
SLISE Black Box Explainer Use SLISE for explaining predictions made by a black box. BUT with sparsity from a combinatorial search rather than Lasso!
Arguments
- X
matrix of independent variables
- Y
vector of the dependent variable
- epsilon
error tolerance
- x
the sample to be explained (or index if y is null)
- y
the prediction to be explained
- ...
Arguments passed on to
slise.explain
lambda1
L1 regularisation coefficient (default: 0)
lambda2
L2 regularisation coefficient (default: 0)
weight
Optional weight vector (default: NULL)
normalise
Preprocess X and Y by scaling, note that epsilon is not scaled (default: FALSE)
logit
Logit transform Y from probabilities to real values (default: FALSE)
initialisation
function that gives the initial alpha and beta, or a list containing the initial alpha and beta (default: slise_initialisation_candidates)
- variables
the number of non-zero coefficients