Skip to content

slisemap.slisemap

Module that contains the Slisemap class.

Slisemap

Slisemap: Combine local explanations with dimensionality reduction.

This class contains the data and the parameters needed for finding a Slisemap solution. It also contains the solution (remember to optimise() first) in the form of an embedding matrix, see get_Z(), and a matrix of coefficients for the local model, see get_B(). Other methods of note are the various plotting methods, the save() method, and the fit_new() method.

The use of some regularisation is highly recommended. Slisemap comes with built-in lasso/L1 and ridge/L2 regularisation (if these are used it is also a good idea to normalise the data in advance).

Attributes:

Name Type Description
n int

The number of data items (X.shape[0]).

m int

The number of variables (X.shape[1]).

o int

The number of targets (Y.shape[1]).

d int

The number of embedding dimensions (Z.shape[1]).

q int

The number of coefficients (B.shape[1]).

intercept bool

Has an intercept term been added to X.

radius float

The radius of the embedding.

lasso float

Lasso regularisation coefficient.

ridge float

Ridge regularisation coefficient.

z_norm float

Z normalisation regularisation coefficient.

local_model CallableLike[predict]

Local model prediction function (see slisemap.local_models).

local_loss CallableLike[loss]

Local model loss function (see slisemap.local_models).

regularisation CallableLike[regularisation]

Additional regularisation function.

distance Callable[[Tensor, Tensor], Tensor]

Distance function.

kernel Callable[[Tensor], Tensor]

Kernel function.

jit bool

Just-In-Time compile the loss function for increased performance (see torch.jit.trace for caveats).

metadata Metadata

A dictionary for storing variable names and other metadata (see slisemap.utils.Metadata).

Source code in slisemap/slisemap.py
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
class Slisemap:
    """__Slisemap__: Combine local explanations with dimensionality reduction.

    This class contains the data and the parameters needed for finding a Slisemap solution.
    It also contains the solution (remember to [optimise()][slisemap.slisemap.Slisemap.optimise] first) in the form of an embedding matrix, see [get_Z()][slisemap.slisemap.Slisemap.get_Z], and a matrix of coefficients for the local model, see [get_B()][slisemap.slisemap.Slisemap.get_B].
    Other methods of note are the various plotting methods, the [save()][slisemap.slisemap.Slisemap.save] method, and the [fit_new()][slisemap.slisemap.Slisemap.fit_new] method.

    The use of some regularisation is highly recommended. Slisemap comes with built-in lasso/L1 and ridge/L2 regularisation (if these are used it is also a good idea to normalise the data in advance).

    Attributes:
        n: The number of data items (`X.shape[0]`).
        m: The number of variables (`X.shape[1]`).
        o: The number of targets (`Y.shape[1]`).
        d: The number of embedding dimensions (`Z.shape[1]`).
        q: The number of coefficients (`B.shape[1]`).
        intercept: Has an intercept term been added to `X`.
        radius: The radius of the embedding.
        lasso: Lasso regularisation coefficient.
        ridge: Ridge regularisation coefficient.
        z_norm: Z normalisation regularisation coefficient.
        local_model: Local model prediction function (see [slisemap.local_models][]).
        local_loss: Local model loss function (see [slisemap.local_models][]).
        regularisation: Additional regularisation function.
        distance: Distance function.
        kernel: Kernel function.
        jit: Just-In-Time compile the loss function for increased performance (see `torch.jit.trace` for caveats).
        metadata: A dictionary for storing variable names and other metadata (see [slisemap.utils.Metadata][]).
    """

    # Make Python faster and safer by not creating a Slisemap.__dict__
    __slots__ = (
        "_X",
        "_Y",
        "_Z",
        "_B",
        "_radius",
        "_lasso",
        "_ridge",
        "_z_norm",
        "_intercept",
        "_local_model",
        "_local_loss",
        "_regularisation",
        "_loss",
        "_distance",
        "_kernel",
        "_jit",
        "metadata",
        "_Z0",  # deprecated
        "_B0",  # deprecated
        "_random_state",  # deprecated
    )

    def __init__(
        self,
        X: ToTensor,
        y: ToTensor,
        radius: float = 3.5,
        d: int = 2,
        lasso: Optional[float] = None,
        ridge: Optional[float] = None,
        z_norm: float = 0.01,
        intercept: bool = True,
        local_model: Union[
            LocalModelCollection, CallableLike[ALocalModel.predict]
        ] = LinearRegression,
        local_loss: Optional[CallableLike[ALocalModel.loss]] = None,
        coefficients: Union[None, int, CallableLike[ALocalModel.coefficients]] = None,
        regularisation: Union[None, CallableLike[ALocalModel.regularisation]] = None,
        distance: Callable[[torch.Tensor, torch.Tensor], torch.Tensor] = torch.cdist,
        kernel: Callable[[torch.Tensor], torch.Tensor] = softmax_row_kernel,
        B0: Optional[ToTensor] = None,
        Z0: Optional[ToTensor] = None,
        jit: bool = True,
        random_state: Optional[int] = None,
        dtype: torch.dtype = torch.float32,
        device: Optional[torch.device] = None,
        cuda: Optional[bool] = None,
    ) -> None:
        """Create a Slisemap object.

        Args:
            X: Data matrix.
            y: Target vector or matrix.
            radius: The radius of the embedding Z. Defaults to 3.5.
            d: The number of embedding dimensions. Defaults to 2.
            lasso: Lasso regularisation coefficient. Defaults to 0.0.
            ridge: Ridge regularisation coefficient. Defaults to 0.0.
            z_norm: Z normalisation regularisation coefficient. Defaults to 0.01.
            intercept: Should an intercept term be added to `X`. Defaults to True.
            local_model: Local model prediction function (see [slisemap.local_models.identify_local_model][]). Defaults to [LinearRegression][slisemap.local_models.LinearRegression].
            local_loss: Local model loss function (see [slisemap.local_models.identify_local_model][]). Defaults to None.
            coefficients: The number of local model coefficients (see [slisemap.local_models.identify_local_model][]). Defaults to None.
            regularisation: Additional regularisation method (see [slisemap.local_models.identify_local_model][]). Defaults to None.
            distance: Distance function. Defaults to `torch.cdist` (Euclidean distance).
            kernel: Kernel function. Defaults to [softmax_row_kernel][slisemap.utils.softmax_row_kernel].
            B0: Initial value for B (random if None). Defaults to None.
            Z0: Initial value for Z (PCA if None). Defaults to None.
            jit: Just-In-Time compile the loss function for increased performance (see `torch.jit.trace` for caveats). Defaults to True.
            random_state: Set an explicit seed for the random number generator (i.e. `torch.manual_seed`). Defaults to None.
            dtype: Floating type. Defaults to `torch.float32`.
            device: Torch device. Defaults to None.
            cuda: Use cuda if available. Defaults to True, if the data is large enough.

        Deprecated:
            1.6: Use `device` instead of `cuda` to force a specific device.
            1.6: The `random_state` has been moved to the escape function.
        """
        for s in Slisemap.__slots__:
            # Initialise all attributes (to avoid attribute errors)
            setattr(self, s, None)
        if lasso is None and ridge is None:
            _warn(
                "Consider using regularisation!\n"
                + "Regularisation is important for handling small neighbourhoods, and also makes the local models more local. "
                + "Lasso (l1) and ridge (l2) regularisation is built-in, via the parameters `lasso` and `ridge`. "
                + "Set `lasso=0` to disable this warning (if no regularisation is really desired).",
                Slisemap,
            )
        local_model, local_loss, coefficients, regularisation = identify_local_model(
            local_model, local_loss, coefficients, regularisation
        )
        self.lasso = 0.0 if lasso is None else lasso
        self.ridge = 0.0 if ridge is None else ridge
        self.kernel = kernel
        self.distance = distance
        self.local_model = local_model
        self.local_loss = local_loss
        self.regularisation = regularisation
        self.z_norm = z_norm
        self.radius = radius
        self._intercept = intercept
        self._jit = jit
        self.metadata: Metadata = Metadata(self)

        if cuda is not None:
            _deprecated("cuda", "device")
        if device is None:
            if cuda is None and isinstance(X, torch.Tensor):
                device = X.device
            elif cuda is True:
                device = torch.device("cuda")
        tensorargs = {"device": device, "dtype": dtype}

        self._X, X_rows, X_columns = to_tensor(X, **tensorargs)
        if intercept:
            self._X = torch.cat((self._X, torch.ones_like(self._X[:, :1])), 1)
        n, m = self._X.shape
        self.metadata.set_variables(X_columns, intercept)

        self._Y, Y_rows, Y_columns = to_tensor(y, **tensorargs)
        self.metadata.set_targets(Y_columns)
        if len(self._Y.shape) == 1:
            self._Y = self._Y[:, None]
        _assert_shape(self._Y, (n, self._Y.shape[1]), "Y", Slisemap)

        if random_state is not None:
            self.random_state = random_state

        if Z0 is None:
            self._Z0 = self._X @ PCA_rotation(self._X, d)
            if self._Z0.shape[1] < d:
                _warn(
                    "The number of embedding dimensions is larger than the number of data dimensions",
                    Slisemap,
                )
                Z0fill = torch.zeros(size=[n, d - self._Z0.shape[1]], **tensorargs)
                self._Z0 = torch.cat((self._Z0, Z0fill), 1)
            Z_rows = None
        else:
            self._Z0, Z_rows, Z_columns = to_tensor(Z0, **tensorargs)
            self.metadata.set_dimensions(Z_columns)
            _assert_shape(self._Z0, (n, d), "Z0", Slisemap)
        if radius > 0:
            norm = 1 / (torch.sqrt(torch.sum(self._Z0**2) / self._Z0.shape[0]) + 1e-8)
            self._Z0 = self._Z0 * norm
        self._Z = self._Z0.detach().clone()

        if callable(coefficients):
            coefficients = coefficients(self._X, self._Y)
        if B0 is None:
            B0 = global_model(
                X=self._X,
                Y=self._Y,
                local_model=self.local_model,
                local_loss=self.local_loss,
                coefficients=coefficients,
                lasso=self.lasso,
                ridge=self.ridge,
            ).detach()
            if not torch.all(torch.isfinite(B0)):
                _warn(
                    "Optimising a global model as initialisation resulted in non-finite values. Consider using stronger regularisation (increase `lasso` or `ridge`).",
                    Slisemap,
                )
                B0 = torch.zeros_like(B0)
            self._B0 = B0.expand((n, coefficients))
            B_rows = None
        else:
            self._B0, B_rows, B_columns = to_tensor(B0, **tensorargs)
            if self._B0.shape[0] == 1:
                self._B0 = self._B0.expand((self.n, coefficients))
            _assert_shape(self._B0, (n, coefficients), "B0", Slisemap)
            self.metadata.set_coefficients(B_columns)
        self._B = self._B0.clone()
        self.metadata.set_rows(X_rows, Y_rows, B_rows, Z_rows)

        if (
            device is None
            and self.n**2 * self.m * self.o > 1_000_000
            and torch.cuda.is_available()
        ):
            self.cuda()

    @property
    def n(self) -> int:
        """The number of data items."""
        return self._X.shape[0]

    @property
    def m(self) -> int:
        """The number of variables (including potential intercept)."""
        return self._X.shape[1]

    @property
    def o(self) -> int:
        """The number of target variables (i.e. the number of classes)."""
        return self._Y.shape[-1]

    @property
    def d(self) -> int:
        """The number of embedding dimensions."""
        return self._Z.shape[1]

    @d.setter
    def d(self, value: int) -> None:
        # Deprecated since 1.6.
        _assert(
            value > 0, "The number of embedding dimensions must be positive", Slisemap.d
        )
        _deprecated("Set `Slisemap.d`", "Create a new Slisemap instead")
        if self.d != value:
            self._loss = None  # invalidate cached loss function
            self._Z = self._Z.detach()
            if self.d > value:
                self._Z = self._Z @ PCA_rotation(self._Z, value)
            else:
                zn = [self._Z, torch.zeros((self.n, value - self.d), **self.tensorargs)]
                self._Z = torch.concat(zn, 1)

    @property
    def q(self) -> int:
        """The number of local model coefficients."""
        return self._B.shape[1]

    @property
    def intercept(self) -> bool:
        """Is an intercept column added to the data?."""
        return self._intercept

    @property
    def radius(self) -> float:
        """The radius of the embedding."""
        return self._radius

    @radius.setter
    def radius(self, value: float) -> None:
        if self._radius != value:
            _assert(value >= 0, "radius must not be negative", Slisemap.radius)
            self._radius = value
            self._loss = None  # invalidate cached loss function

    @property
    def lasso(self) -> float:
        """Lasso regularisation strength."""
        return self._lasso

    @lasso.setter
    def lasso(self, value: float) -> None:
        if self._lasso != value:
            _assert(value >= 0, "lasso must not be negative", Slisemap.lasso)
            self._lasso = value
            self._loss = None  # invalidate cached loss function

    @property
    def ridge(self) -> float:
        """Ridge regularisation strength."""
        return self._ridge

    @ridge.setter
    def ridge(self, value: float) -> None:
        if self._ridge != value:
            _assert(value >= 0, "ridge must not be negative", Slisemap.ridge)
            self._ridge = value
            self._loss = None  # invalidate cached loss function

    @property
    def z_norm(self) -> float:
        """Z normalisation regularisation strength."""
        return self._z_norm

    @z_norm.setter
    def z_norm(self, value: float) -> None:
        if self._z_norm != value:
            _assert(value >= 0, "z_norm must not be negative", Slisemap.z_norm)
            self._z_norm = value
            self._loss = None  # invalidate cached loss function

    @property
    def local_model(self) -> CallableLike[ALocalModel.predict]:
        """Local model prediction function. Takes in X[n, m] and B[n, q], and returns Ytilde[n, n, o]."""
        return self._local_model

    @local_model.setter
    def local_model(self, value: CallableLike[ALocalModel.predict]) -> None:
        if self._local_model != value:
            _assert(
                callable(value), "local_model must be callable", Slisemap.local_model
            )
            self._local_model = value
            self._loss = None  # invalidate cached loss function

    @property
    def local_loss(self) -> CallableLike[ALocalModel.loss]:
        """Local model loss function. Takes in Ytilde[n, n, o] and Y[n, o] and returns L[n, n]."""
        return self._local_loss

    @local_loss.setter
    def local_loss(self, value: CallableLike[ALocalModel.loss]) -> None:
        if self._local_loss != value:
            _assert(callable(value), "local_loss must be callable", Slisemap.local_loss)
            self._local_loss = value
            self._loss = None  # invalidate cached loss function

    @property
    def regularisation(self) -> CallableLike[ALocalModel.regularisation]:
        """Regularisation function. Takes in X, Y, Bp, Z, and Ytilde and returns an additional loss scalar."""
        return self._regularisation

    @regularisation.setter
    def regularisation(self, value: CallableLike[ALocalModel.regularisation]) -> None:
        if self._regularisation != value:
            _assert(
                callable(value),
                "regularisation function must be callable",
                Slisemap.regularisation,
            )
            self._regularisation = value
            self._loss = None  # invalidate cached loss function

    @property
    def distance(self) -> Callable[[torch.Tensor, torch.Tensor], torch.Tensor]:
        """Distance function. Takes in Z[n1, d] and Z[n2, d], and returns D[n1, n2]."""
        return self._distance

    @distance.setter
    def distance(
        self, value: Callable[[torch.Tensor, torch.Tensor], torch.Tensor]
    ) -> None:
        if self._distance != value:
            _assert(callable(value), "distance must be callable", Slisemap.distance)
            self._distance = value
            self._loss = None  # invalidate cached loss function

    @property
    def kernel(self) -> Callable[[torch.Tensor], torch.Tensor]:
        """Kernel function. Takes in D[n, n] and returns W[n, n]."""
        return self._kernel

    @kernel.setter
    def kernel(self, value: Callable[[torch.Tensor], torch.Tensor]) -> None:
        if self._kernel != value:
            _assert(callable(value), "kernel must be callable", Slisemap.kernel)
            self._kernel = value
            self._loss = None  # invalidate cached loss function

    @property
    def jit(self) -> bool:
        """Just-In-Time compile the loss function?."""
        return self._jit

    @jit.setter
    def jit(self, value: bool) -> None:
        if self._jit != value:
            self._jit = value
            self._loss = None  # invalidate cached loss function

    def random_state(self, value: Optional[int]) -> None:
        """Set the seed for the random number generator specific for this object (None reverts to the global `torch` PRNG).

        Deprecated:
            1.6: Use `Slisemap.escape(random_state=...)` instead.
        """
        _deprecated(Slisemap.random_state, "Slisemap.escape(random_state=...)")
        if value is None:
            self._random_state = None
        else:
            if self._X.device.type == "cpu":
                self._random_state = torch.random.manual_seed(value)
            elif self._X.device.type == "cuda":
                gen = torch.cuda.default_generators[self._X.device.index]
                self._random_state = gen.manual_seed(value)
            else:
                _warn(
                    Slisemap.random_state,
                    "Unknown device, setting the global seed insted",
                )
                torch.random.manual_seed(value)
                self._random_state = None

    random_state = property(fset=random_state, doc=random_state.__doc__)

    @property
    def tensorargs(self) -> Dict[str, Any]:
        """When creating a new `torch.Tensor` add these keyword arguments to match the `dtype` and `device` of this Slisemap object."""
        return {"device": self._X.device, "dtype": self._X.dtype}

    def cuda(self, **kwargs: Any) -> None:
        """Move the tensors to CUDA memory (and run the calculations there).

        Note that this resets the random state.

        Keyword Args:
            **kwargs: Optional arguments to `torch.Tensor.cuda`
        """
        X = self._X.cuda(**kwargs)
        self._X = X
        self._Y = self._Y.cuda(**kwargs)
        self._Z = self._Z.detach().cuda(**kwargs)
        self._B = self._B.detach().cuda(**kwargs)
        self._loss = None  # invalidate cached loss function

    def cpu(self, **kwargs: Any) -> None:
        """Move the tensors to CPU memory (and run the calculations there).

        Note that this resets the random state.

        Keyword Args:
            **kwargs: Optional arguments to `torch.Tensor.cpu`
        """
        X = self._X.cpu(**kwargs)
        self._X = X
        self._Y = self._Y.cpu(**kwargs)
        self._Z = self._Z.detach().cpu(**kwargs)
        self._B = self._B.detach().cpu(**kwargs)
        self._loss = None  # invalidate cached loss function

    def _get_loss_fn(
        self, individual: bool = False
    ) -> Callable[
        [torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor], torch.Tensor
    ]:
        """Return the Slisemap loss function.

        This function JITs and caches the loss function for efficiency.

        Args:
            individual: Make a loss function for individual losses. Defaults to False.

        Returns:
            Loss function: `f(X, Y, B, Z) -> loss`.
        """
        if individual:
            return make_loss(
                local_model=self.local_model,
                local_loss=self.local_loss,
                distance=self.distance,
                kernel=self.kernel,
                radius=self.radius,
                lasso=self.lasso,
                ridge=self.ridge,
                z_norm=0.0,
                individual=True,
            )
        if self._loss is None:
            # Caching the loss function
            self._loss = make_loss(
                local_model=self.local_model,
                local_loss=self.local_loss,
                distance=self.distance,
                kernel=self.kernel,
                radius=self.radius,
                lasso=self.lasso,
                ridge=self.ridge,
                z_norm=self.z_norm,
                regularisation=self.regularisation,
            )
            # JITting the loss function improves the performance
            if self._jit:
                self._loss = torch.jit.trace(
                    self._loss, (self._X[:1], self._Y[:1], self._B[:1], self._Z[:1])
                )
        return self._loss

    def _as_new_X(self, X: Optional[ToTensor] = None) -> torch.Tensor:
        if X is None:
            return self._X
        X = torch.atleast_2d(to_tensor(X, **self.tensorargs)[0])
        if self._intercept and X.shape[1] == self.m - 1:
            X = torch.cat((X, torch.ones_like(X[:, :1])), 1)
        _assert_shape(X, (X.shape[0], self.m), "X", Slisemap._as_new_X)
        return X

    def _as_new_Y(self, Y: Optional[ToTensor] = None, n: int = -1) -> torch.Tensor:
        if Y is None:
            return self._Y
        Y = to_tensor(Y, **self.tensorargs)[0]
        if len(Y.shape) < 2:
            Y = torch.reshape(Y, (n, self.o))
        _assert_shape(Y, (n if n > 0 else Y.shape[0], self.o), "Y", Slisemap._as_new_Y)
        return Y

    def get_Z(
        self, scale: bool = True, rotate: bool = False, numpy: bool = True
    ) -> Union[np.ndarray, torch.Tensor]:
        """Get the Z matrix.

        Args:
            scale: Scale the returned `Z` to match self.radius. Defaults to True.
            rotate: Rotate the returned `Z` so that the first dimension is the major axis. Defaults to False.
            numpy: Return the matrix as a numpy (True) or pytorch (False) matrix. Defaults to True.

        Returns:
           The `Z` matrix.
        """
        self._normalise()
        Z = self._Z * self.radius if scale and self.radius > 0 else self._Z
        if rotate:
            Z = Z @ PCA_rotation(Z, center=False)
        return tonp(Z) if numpy else Z

    def get_B(self, numpy: bool = True) -> Union[np.ndarray, torch.Tensor]:
        """Get the B matrix.

        Args:
            numpy: Return the matrix as a numpy (True) or pytorch (False) matrix. Defaults to True.

        Returns:
           The `B` matrix.
        """
        return tonp(self._B) if numpy else self._B

    def get_D(self, numpy: bool = True) -> Union[np.ndarray, torch.Tensor]:
        """Get the embedding distance matrix.

        Args:
            numpy: Return the matrix as a numpy (True) or pytorch (False) matrix. Defaults to True.

        Returns:
           The `D` matrix.
        """
        Z = self.get_Z(rotate=False, scale=True, numpy=False)
        D = self._distance(Z, Z)
        return tonp(D) if numpy else D

    def get_L(
        self,
        X: Optional[ToTensor] = None,
        Y: Optional[ToTensor] = None,
        numpy: bool = True,
    ) -> Union[np.ndarray, torch.Tensor]:
        """Get the loss matrix: [B.shape[0], X.shape[0]].

        Args:
            X: Optional replacement for the training X. Defaults to None.
            Y: Optional replacement for the training Y. Defaults to None.
            numpy: Return the matrix as a numpy (True) or pytorch (False) matrix. Defaults to True.

        Returns:
           The `L` matrix.
        """
        X = self._as_new_X(X)
        Y = self._as_new_Y(Y, X.shape[0])
        L = self.local_loss(self.local_model(X, self._B), Y)
        return tonp(L) if numpy else L

    def get_W(self, numpy: bool = True) -> Union[np.ndarray, torch.Tensor]:
        """Get the weight matrix.

        Args:
            numpy: Return the matrix as a numpy.ndarray instead of a torch.Tensor. Defaults to True.

        Returns:
           The `W` matrix.
        """
        W = self.kernel(self.get_D(numpy=False))
        return tonp(W) if numpy else W

    def get_X(
        self, numpy: bool = True, intercept: bool = True
    ) -> Union[np.ndarray, torch.Tensor]:
        """Get the data matrix.

        Args:
            numpy: Return the matrix as a numpy.ndarray instead of a torch.Tensor. Defaults to True.
            intercept: Include the intercept column (if `self.intercept == True`). Defaults to True.

        Returns:
           The `X` matrix.
        """
        X = self._X if intercept or not self._intercept else self._X[:, :-1]
        return tonp(X) if numpy else X

    def get_Y(
        self, numpy: bool = True, ravel: bool = False
    ) -> Union[np.ndarray, torch.Tensor]:
        """Get the target matrix.

        Args:
            numpy: Return the matrix as a numpy.ndarray instead of a torch.Tensor. Defaults to True.
            ravel: Remove the second dimension if it is singular (i.e. turn it into a vector). Defaults to False.

        Returns:
           The `Y` matrix.
        """
        Y = self._Y.ravel() if ravel else self._Y
        return tonp(Y) if numpy else Y

    def value(
        self, individual: bool = False, numpy: bool = True
    ) -> Union[float, np.ndarray, torch.Tensor]:
        """Calculate the loss value.

        Args:
            individual: Give loss individual loss values for the data points. Defaults to False.
            numpy: Return the loss as a numpy.ndarray or float instead of a torch.Tensor. Defaults to True.

        Returns:
            The loss value(s).
        """
        loss = self._get_loss_fn(individual)
        loss = loss(X=self._X, Y=self._Y, B=self._B, Z=self._Z)
        if individual:
            return tonp(loss) if numpy else loss
        else:
            return loss.cpu().item() if numpy else loss

    def entropy(
        self, aggregate: bool = True, numpy: bool = True
    ) -> Union[float, np.ndarray, torch.Tensor]:
        """Compute row-wise entropy of the `W` matrix induced by `Z`. **DEPRECATED**.

        Args:
            aggregate: Aggregate the row-wise entropies into one scalar. Defaults to True.
            numpy: Return a `numpy.ndarray` or `float` instead of a `torch.Tensor`. Defaults to True.

        Returns:
            The entropy.

        Deprecated:
            1.4: Use [slisemap.metrics.entropy][slisemap.metrics.entropy] instead.
        """
        _deprecated(Slisemap.entropy, "slisemap.metrics.entropy")
        from slisemap.metrics import entropy

        return entropy(self, aggregate, numpy)

    def lbfgs(
        self,
        max_iter: int = 500,
        verbose: bool = False,
        *,
        only_B: bool = False,
        **kwargs: Any,
    ) -> float:
        """Optimise Slisemap using LBFGS.

        Args:
            max_iter: Maximum number of LBFGS iterations. Defaults to 500.
            verbose: Print status messages. Defaults to False.

        Keyword Args:
            only_B: Only optimise B. Defaults to False.
            **kwargs: Optional keyword arguments to LBFGS.

        Returns:
            The loss value.
        """
        Z = self._Z.detach().clone().requires_grad_(True)
        B = self._B.detach().clone().requires_grad_(True)

        loss_ = self._get_loss_fn()
        loss_fn = lambda: loss_(self._X, self._Y, B, Z)  # noqa: E731
        pre_loss = loss_fn().cpu().detach().item()
        LBFGS(
            loss_fn,
            [B] if only_B else [Z, B],
            max_iter=max_iter,
            verbose=verbose,
            **kwargs,
        )
        post_loss = loss_fn().cpu().detach().item()

        if np.isnan(post_loss):
            _warn(
                "An LBFGS optimisation resulted in `nan` (try strengthening the regularisation or reducing the radius)",
                Slisemap.lbfgs,
            )
            # Some datasets (with logistic local models) are initially numerically unstable.
            # Just running LBFGS for one iteration seems to avoid those issues.
            Z = self._Z.detach().requires_grad_(True)
            B = self._B.detach().requires_grad_(True)
            LBFGS(
                loss_fn,
                [B] if only_B else [Z, B],
                max_iter=1,
                verbose=verbose,
                **kwargs,
            )
            post_loss = loss_fn().cpu().detach().item()
        if post_loss < pre_loss:
            self._Z = Z.detach()
            self._B = B.detach()
            self._normalise()
            return post_loss
        else:
            if verbose:
                print("Slisemap.lbfgs: No improvement found")
            return pre_loss

    def escape(
        self,
        force_move: bool = True,
        escape_fn: Callable = escape_neighbourhood,
        lerp: float = 0.95,
        noise: float = 0.0,
        random_state: int = 42,
    ) -> None:
        """Try to escape a local optimum by moving the items (embedding and local model) to the neighbourhoods best suited for them.

        This is done by finding another item (in the optimal neighbourhood) and copying its values for Z and B.

        Args:
            force_move: Do not allow the items to pair with themselves. Defaults to True.
            escape_fn: Escape function (see [slisemap.escape][]). Defaults to [escape_neighbourhood][slisemap.escape.escape_neighbourhood].
            lerp: Linear interpolation between the old (0.0) and the new (1.0) embedding position. Defaults to 0.95.
            noise: Scale of the noise added to the embedding matrix if it looses rank after an escape (recommended for gradient based optimisers). Defaults to 1e-4.
            random_state: Seed for the random generator if `noise > 0.0`. Defaults to 42.
        """
        if lerp <= 0.0:
            _warn("Escaping with `lerp <= 0` does nothing!", Slisemap.escape)
            return
        B, Z = escape_fn(
            X=self._X,
            Y=self._Y,
            B=self._B,
            Z=self._Z,
            local_model=self.local_model,
            local_loss=self.local_loss,
            distance=self.distance,
            kernel=self.kernel,
            radius=self.radius,
            force_move=force_move,
            jit=self.jit,
        )
        if lerp >= 1.0:
            self._B, self._Z = B, Z
        else:
            self._B = (1.0 - lerp) * self._B + lerp * B
            self._Z = (1.0 - lerp) * self._Z + lerp * Z
        if noise > 0.0:
            rank = torch.linalg.matrix_rank(self._Z - torch.mean(self._Z, 0, True))
            if rank.item() < min(*self._Z.shape):
                generator = torch.Generator(self._Z.device).manual_seed(random_state)
                self._Z = torch.normal(self._Z, noise, generator=generator)
        self._normalise()

    def _normalise(self) -> None:
        """Normalise Z."""
        if self.radius > 0:
            scale = torch.sqrt(torch.sum(self._Z**2) / self.n)
            if not torch.allclose(scale, torch.ones_like(scale)):
                self._Z *= 1 / (scale + 1e-8)

    def optimise(
        self,
        patience: int = 2,
        max_escapes: int = 100,
        max_iter: int = 500,
        verbose: Literal[0, 1, 2] = 0,
        only_B: bool = False,
        escape_kws: Dict[str, object] = {},
        *,
        escape_fn: Optional[CallableLike[escape_neighbourhood]] = None,
        noise: Optional[float] = None,
        **kwargs: Any,
    ) -> float:
        """Optimise Slisemap by alternating between [self.lbfgs()][slisemap.slisemap.Slisemap.lbfgs] and [self.escape()][slisemap.slisemap.Slisemap.escape] until convergence.

        Statistics for the optimisation can be found in `self.metadata["optimize_time"]` and `self.metadata["optimize_loss"]`.

        Args:
            patience: Number of escapes without improvement before stopping. Defaults to 2.
            max_escapes: Maximum numbers optimisation rounds. Defaults to 100.
            max_iter: Maximum number of LBFGS iterations per round. Defaults to 500.
            verbose: Print status messages (0: no, 1: some, 2: all). Defaults to 0.
            only_B: Only optimise the local models, not the embedding. Defaults to False.
            escape_kws: Optional keyword arguments to [self.escape()][slisemap.slisemap.Slisemap.escape]. Defaults to {}.

        Keyword Args:
            escape_fn: Escape function (see [slisemap.escape][]). Defaults to [escape_neighbourhood][slisemap.escape.escape_neighbourhood].
            noise: Scale of the noise added to the embedding matrix if it looses rank after an escape.
            **kwargs: Optional keyword arguments to Slisemap.lbfgs.

        Returns:
            The loss value.

        Deprecated:
            1.6: The `noise` argument, use `escape_kws={"noise": noise}` instead.
            1.6: The `escape_fn` argument, use `escape_kws={"escape_fn": escape_fn}` instead.
        """
        if noise is not None:
            _deprecated(
                "Slisemap.optimise(noise=noise, ...)",
                'Slisemap.optimise(escape_kws={"noise":noise}, ...)',
            )
            escape_kws.setdefault("noise", noise)
        if escape_fn is not None:
            _deprecated(
                "Slisemap.optimise(escape_fn=escape_fn, ...)",
                'Slisemap.optimise(escape_kws={"escape_fn":escape_fn}, ...)',
            )
            escape_kws.setdefault("escape_fn", escape_fn)
        loss = np.repeat(np.inf, 2)
        time = timer()
        loss[0] = self.lbfgs(
            max_iter=max_iter,
            only_B=True,
            increase_tolerance=not only_B,
            verbose=verbose > 1,
            **kwargs,
        )
        history = [loss[0]]
        if verbose:
            i = 0
            print(f"Slisemap.optimise LBFGS  {i:2d}: {loss[0]:.2f}")
        if only_B:
            self.metadata["optimize_time"] = timer() - time
            self.metadata["optimize_loss"] = history
            return loss[0]
        cc = CheckConvergence(patience, max_escapes)
        while not cc.has_converged(loss, self.copy, verbose=verbose > 1):
            self.escape(random_state=cc.iter, **escape_kws)
            loss[1] = self.value()
            if verbose:
                print(f"Slisemap.optimise Escape {i:2d}: {loss[1]:.2f}")
            loss[0] = self.lbfgs(
                max_iter=max_iter,
                increase_tolerance=True,
                verbose=verbose > 1,
                **kwargs,
            )
            history.append(loss[1])
            history.append(loss[0])
            if verbose:
                i += 1
                print(f"Slisemap.optimise LBFGS  {i:2d}: {loss[0]:.2f}")
        self._Z = cc.optimal._Z
        self._B = cc.optimal._B
        loss = self.lbfgs(
            max_iter=max_iter * 2,
            increase_tolerance=False,
            verbose=verbose > 1,
            **kwargs,
        )
        history.append(loss)
        self.metadata["optimize_time"] = timer() - time
        self.metadata["optimize_loss"] = history
        if verbose:
            print(f"Slisemap.optimise Final    : {loss:.2f}")
        return loss

    optimize = optimise

    def fit_new(
        self,
        Xnew: ToTensor,
        ynew: ToTensor,
        optimise: bool = True,
        between: bool = True,
        escape_fn: Callable = escape_neighbourhood,
        loss: bool = False,
        verbose: bool = False,
        numpy: bool = True,
        **kwargs: Any,
    ) -> Union[
        Tuple[np.ndarray, np.ndarray, Optional[np.ndarray]],
        Tuple[torch.Tensor, torch.Tensor, Optional[torch.Tensor]],
    ]:
        """Generate embedding(s) and model(s) for new data item(s).

        This works as follows:
            1. Find good initial embedding(s) and local model(s) using the escape_fn.
            2. Optionally finetune the embedding(s) and model(s) using LBFG.

        Args:
            Xnew: New data point(s).
            ynew: New target(s).
            optimise: Should the embedding and model be optimised (after finding the neighbourhood). Defaults to True.
            between: If `optimise=True`, should the new points affect each other? Defaults to True.
            escape_fn: Escape function (see [slisemap.escape][]). Defaults to [escape_neighbourhood][slisemap.escape.escape_neighbourhood].
            loss: Return a vector of individual losses for the new items. Defaults to False.
            verbose: Print status messages. Defaults to False.
            numpy: Return the results as numpy (True) or pytorch (False) matrices. Defaults to True.

        Keyword Args:
            **kwargs: Optional keyword arguments to LBFGS.

        Returns:
            Bnew: Local model coefficients for the new data.
            Znew: Embedding(s) for the new data.
            loss: Individual losses if `loss=True`.
        """
        Xnew = self._as_new_X(Xnew)
        n = Xnew.shape[0]
        ynew = self._as_new_Y(ynew, n)
        if verbose:
            print("Escaping the new data")
        Bnew, Znew = escape_fn(
            X=Xnew,
            Y=ynew,
            B=self._B,
            Z=self._Z,
            local_model=self.local_model,
            local_loss=self.local_loss,
            distance=self.distance,
            kernel=self.kernel,
            radius=self.radius,
            force_move=False,
            Xold=self._X,
            Yold=self._Y,
            jit=self.jit,
        )
        if verbose:
            Zrad = torch.sqrt(torch.sum(Znew**2) / n).cpu().detach().item()
            print("  radius(Z_new) =", Zrad)

        if optimise:
            if verbose:
                print("Optimising the new data")
            lf, set_new = make_marginal_loss(
                X=self._X,
                Y=self._Y,
                B=self._B,
                Z=self._Z,
                Xnew=Xnew if between else Xnew[:1],
                Ynew=ynew if between else ynew[:1],
                local_model=self.local_model,
                local_loss=self.local_loss,
                distance=self.distance,
                kernel=self.kernel,
                radius=self.radius,
                lasso=self.lasso,
                ridge=self.ridge,
                jit=self.jit,
            )
            if between:
                Bnew = Bnew.detach().requires_grad_(True)
                Znew = Znew.detach().requires_grad_(True)
                LBFGS(lambda: lf(Bnew, Znew), [Bnew, Znew], **kwargs)
            else:
                for j in range(n):
                    set_new(Xnew[None, j], ynew[None, j])
                    Bi = Bnew[None, j].detach().clone().requires_grad_(True)
                    Zi = Znew[None, j].detach().clone().requires_grad_(True)
                    LBFGS(lambda: lf(Bi, Zi), [Bi, Zi], **kwargs)  # noqa: B023
                    Bnew[j] = Bi.detach()
                    Znew[j] = Zi.detach()
            if verbose:
                Zrad = torch.sqrt(torch.sum(Znew**2) / n).cpu().detach().item()
                print("  radius(Z_new) =", Zrad)
        if self.radius > 0:
            if verbose:
                print("Normalising the solution")
            norm = self.radius / (torch.sqrt(torch.sum(self._Z**2) / self.n) + 1e-8)
            Zout = Znew * norm
            if verbose:
                Zrad = torch.sqrt(torch.sum(Zout**2) / n).cpu().detach().item()
                print("  radius(Z_new) =", Zrad)
        else:
            Zout = Znew
        if loss:
            if verbose:
                print("Calculating individual losses")
            lf = self._get_loss_fn(individual=True)
            if between:
                loss = lf(
                    X=torch.cat((self._X, Xnew), 0),
                    Y=torch.cat((self._Y, ynew), 0),
                    B=torch.cat((self._B, Bnew), 0),
                    Z=torch.cat((self._Z, Znew), 0),
                )[self.n :]
            else:
                if self._jit:
                    lf = torch.jit.trace(lf, (Xnew[:1], ynew[:1], Bnew[:1], Znew[:1]))
                loss = torch.zeros(n, **self.tensorargs)
                for j in range(n):
                    loss[j] = lf(
                        X=torch.cat((self._X, Xnew[None, j]), 0),
                        Y=torch.cat((self._Y, ynew[None, j]), 0),
                        B=torch.cat((self._B, Bnew[None, j]), 0),
                        Z=torch.cat((self._Z, Znew[None, j]), 0),
                    )[-1]
            if verbose:
                print("  mean(loss) =", loss.detach().mean().cpu().item())
            return (tonp(Bnew), tonp(Zout), tonp(loss)) if numpy else (Bnew, Zout, loss)
        else:
            return (tonp(Bnew), tonp(Zout)) if numpy else (Bnew, Zout)

    def predict(  # noqa: D417
        self,
        X: Optional[ToTensor] = None,
        B: Optional[ToTensor] = None,
        Z: Optional[ToTensor] = None,
        numpy: bool = True,
        *,
        Xnew: Optional[ToTensor] = None,
        Znew: Optional[ToTensor] = None,
        **kwargs: Any,
    ) -> np.ndarray:
        """Predict new outcomes when the data and embedding or local model is known.

        If the local models `B` are known they are used.
        If the embeddings `Z` are known they are used to find new local models.
        Ohterwise the closest training X gives the `B`.

        Args:
            X: Data matrix (set to None to use the training data). Defaults to None.
            B: Coefficient matrix. Defaults to None.
            Z: Embedding matrix. Defaults to None.
            numpy: Return the result as a numpy (True) or a pytorch (False) matrix. Defaults to True.

        Keyword Args:
            **kwargs: Optional keyword arguments to LBFGS.

        Returns:
            Prediction matrix.

        Deprecated:
            1.4: Renamed Xnew, Znew to X, Z.
        """
        if Xnew is not None:
            X = Xnew
            _deprecated(
                "Parameter 'Xnew' in Slisemap.predict",
                "parameter 'X' in Slisemap.predict",
            )
        if Znew is not None:
            Z = Znew
            _deprecated(
                "Parameter 'Znew' in Slisemap.predict",
                "parameter 'Z' in Slisemap.predict",
            )
        if X is None:
            X = self._X
            if B is None and Z is None:
                B = self._B
        else:
            X = self._as_new_X(X)
            if B is None and Z is None:
                D = torch.cdist(X, self._X)
                B = self._B[D.argmin(1), :]
        if B is None:
            Z = torch.atleast_2d(to_tensor(Z, **self.tensorargs)[0])
            _assert_shape(Z, (X.shape[0], self.d), "Z", Slisemap.predict)
            D = self._distance(Z, self._Z)
            W = self.kernel(D)
            B = self._B[torch.argmin(D, 1)].clone().requires_grad_(True)
            yhat = lambda: (  # noqa: E731
                torch.sum(W * self.local_loss(self.local_model(self._X, B), self._Y))
                + self.lasso * torch.sum(torch.abs(B))
                + self.ridge * torch.sum(B**2)
            )
            LBFGS(yhat, [B], **kwargs)
        else:
            B = torch.atleast_2d(to_tensor(B, **self.tensorargs)[0])
            _assert_shape(B, (X.shape[0], self.q), "B", Slisemap.predict)
        yhat = local_predict(X, B, self.local_model)
        return tonp(yhat) if numpy else yhat

    def copy(self) -> "Slisemap":
        """Make a copy of this Slisemap that references as much of the same torch-data as possible.

        Returns:
            An almost shallow copy of this Slisemap object.
        """
        other = copy(self)  # Shallow copy!
        # Deep copy these:
        other._B = other._B.clone().detach()
        other._Z = other._Z.clone().detach()
        return other

    def restore(self) -> None:
        """Reset B and Z to their initial values B0 and Z0.

        Deprecated:
            1.6: Use `Slisemap.copy` before any optimisation instead.
        """
        _deprecated(Slisemap.restore, Slisemap.copy)
        self._Z = self._Z0.clone().detach()
        self._B = self._B0.clone().detach()

    def save(
        self,
        f: Union[str, PathLike, BinaryIO],
        any_extension: bool = False,
        compress: Union[bool, int] = True,
        **kwargs: Any,
    ) -> None:
        """Save the Slisemap object to a file.

        This method uses `torch.save` (which uses `pickle` for the non-pytorch properties).
        This means that lambda-functions are not supported (unless a custom pickle module is used, see `torch.save`).

        Note that the random state is not saved, only the initial seed (if set).

        The default file extension is ".sm".

        Args:
            f: Either a Path-like object or a (writable) File-like object.
            any_extension: Do not check the file extension. Defaults to False.
            compress: Compress the file with LZMA. Either a bool or a compression preset [0, 9]. Defaults to True.

        Keyword Args:
            **kwargs: Parameters forwarded to `torch.save`.
        """
        if not any_extension and isinstance(f, (str, PathLike)):  # noqa: SIM102
            if not str(f).endswith(".sm"):
                _warn(
                    "When saving Slisemap objects, consider using the '.sm' extension for consistency.",
                    Slisemap.save,
                )
        loss = self._loss
        prng = self._random_state
        try:
            self.metadata.root = None
            self._B = self._B.detach()
            self._Z = self._Z.detach()
            self._loss = None
            self._random_state = None
            if isinstance(compress, int) and compress > 0:
                with lzma.open(f, "wb", preset=compress) as f2:
                    torch.save(self, f2, **kwargs)
            elif compress:
                with lzma.open(f, "wb") as f2:
                    torch.save(self, f2, **kwargs)
            else:
                torch.save(self, f, **kwargs)
        finally:
            self.metadata.root = self
            self._loss = loss
            self._random_state = prng

    @classmethod
    def load(
        cls,
        f: Union[str, PathLike, BinaryIO],
        device: Union[None, str, torch.device] = None,
        *,
        map_location: Optional[object] = None,
        **kwargs: Any,
    ) -> "Slisemap":
        """Load a Slisemap object from a file.

        This function uses `torch.load`, so the tensors are restored to their previous devices.
        Use `device="cpu"` to avoid assuming that the same device exists.
        This is useful if the Slisemap object has been trained on a GPU, but the current computer lacks a GPU.

        Note that this is a classmethod, use it with: `Slisemap.load(...)`.

        SAFETY: This function is based on `torch.load` which (by default) uses `pickle`.
        Do not use `Slisemap.load` on untrusted files, since `pickle` can run arbitrary Python code.

        Args:
            f: Either a Path-like object or a (readable) File-like object.
            device: Device to load the tensors to (or the original if None). Defaults to None.

        Keyword Args:
            map_location: The same as `device` (this is the name used by `torch.load`). Defaults to None.
            **kwargs: Parameters forwarded to `torch.load`.

        Returns:
            The loaded Slisemap object.
        """
        if device is None:
            device = map_location
        try:
            with lzma.open(f, "rb") as f2:
                sm = torch.load(f2, map_location=device, **kwargs)
        except lzma.LZMAError:
            sm: Slisemap = torch.load(f, map_location=device, **kwargs)
        return sm

    def __setstate__(self, data: Any) -> None:
        # Handling loading of Slisemap objects from older versions
        if not isinstance(data, dict):
            data = next(d for d in data if isinstance(d, dict))
        for k, v in data.items():
            try:
                setattr(self, k, v)
            except AttributeError as e:
                _warn(e, Slisemap.__setstate__)
        if isinstance(getattr(self, "metadata", {}), Metadata):
            self.metadata.root = self
        else:
            self.metadata = Metadata(self, **getattr(self, "metadata", {}))
        if not hasattr(self, "_regularisation"):
            self._regularisation = ALocalModel.regularisation

    def get_model_clusters(
        self,
        clusters: int,
        B: Optional[np.ndarray] = None,
        Z: Optional[np.ndarray] = None,
        random_state: int = 42,
        **kwargs: Any,
    ) -> Tuple[np.ndarray, np.ndarray]:
        """Cluster the local model coefficients using k-means (from scikit-learn).

        This method (with a fixed random seed) is used for plotting Slisemap solutions.

        Args:
            clusters: Number of clusters.
            B: B matrix. Defaults to `self.get_B()`.
            Z: Z matrix. Defaults to `self.get_Z(rotate=True)`.
            random_state: random_state for the KMeans clustering. Defaults to 42.

        Keyword Args:
            **kwargs: Additional arguments to `sklearn.cluster.KMeans` or `sklearn.cluster.MiniBatchKMeans` if `self.n >= 1024`.

        Returns:
            labels: Vector of cluster labels.
            centres: Matrix of cluster centres.
        """
        B = B if B is not None else self.get_B()
        Z = Z if Z is not None else self.get_Z(rotate=True)
        with warnings.catch_warnings():
            warnings.simplefilter("ignore", FutureWarning)
            # Some sklearn versions warn about changing defaults for KMeans
            kwargs.setdefault("random_state", random_state)
            if self.n >= 1024:
                km = MiniBatchKMeans(clusters, **kwargs).fit(B)
            else:
                km = KMeans(clusters, **kwargs).fit(B)
        ord = np.argsort([Z[km.labels_ == k, 0].mean() for k in range(clusters)])
        return np.argsort(ord)[km.labels_], km.cluster_centers_[ord]

    def plot(
        self,
        title: str = "",
        clusters: Union[None, int, np.ndarray] = None,
        bars: Union[bool, int, Sequence[str]] = True,
        jitter: Union[float, np.ndarray] = 0.0,
        show: bool = True,
        bar: Union[None, bool, int] = None,
        *,
        B: Optional[np.ndarray] = None,
        Z: Optional[np.ndarray] = None,
        variables: Optional[Sequence[str]] = None,
        targets: Union[None, str, Sequence[str]] = None,
        **kwargs: Any,
    ) -> Optional[Figure]:
        """Plot the Slisemap solution using seaborn.

        Args:
            title: Title of the plot. Defaults to "".
            clusters: Can be None (plot individual losses), an int (plot k-means clusters of B), or an array of known cluster id:s. Defaults to None.
            bars: Plot the local models in a bar plot. Either an int (to only plot the most influential variables), a list of variables, or a bool. Defaults to True.
            jitter: Add random (normal) noise to the embedding, or a matrix with pre-generated noise matching Z. Defaults to 0.0.
            show: Show the plot. Defaults to True.
            bar: Alternative spelling for `bars`. Defaults to None.

        Keyword Args:
            B: Override self.get_B() in the plot. Defaults to None. **DEPRECATED**
            Z: Override self.get_Z() in the plot. Defaults to None. **DEPRECATED**
            variables: List of variable names. Defaults to None. **DEPRECATED**
            targets: Target name(s). Defaults to None. **DEPRECATED**
            **kwargs: Additional arguments to [plot_solution][slisemap.plot.plot_solution] and `plt.subplots`.

        Returns:
            `matplotlib.figure.Figure` if `show=False`.

        Deprecated:
            1.3: Parameter `variables`, use `metadata.set_variables()` instead!
            1.3: Parameter `targets`, use `metadata.set_targets()` instead!
            1.3: Parameter `B`.
            1.3: Parameter `Z`.
        """
        if bar is not None:
            bars = bar
        if Z is None:
            Z = self.get_Z(rotate=True)
        else:
            _deprecated("Parameter 'Z' in Slisemap.plot")
        if B is None:
            B = self.get_B()
        else:
            _deprecated("Parameter 'B' in Slisemap.plot")
        dimensions = self.metadata.get_dimensions(long=True)
        if variables is not None:
            _deprecated(
                "Parameter 'variables' in 'Slisemap.plot'",
                "'Slisemap.metadata.set_variables'",
            )
            coefficients = _expand_variable_names(
                variables, self.intercept, self.m, targets, self.q
            )
        else:
            coefficients = self.metadata.get_coefficients()
        if targets is not None:
            _deprecated(
                "Parameter 'targets' in 'Slisemap.plot'",
                "'Slisemap.metadata.set_targets'",
            )

        loss = None
        centers = None
        if clusters is None:
            if Z.shape[0] == self._Z.shape[0]:
                loss = tonp(self.local_loss(self.predict(numpy=False), self._Y))
        else:
            if isinstance(clusters, int):
                clusters, centers = self.get_model_clusters(clusters, B, Z)
            else:
                clusters = np.asarray(clusters)
                centers = np.stack(
                    [np.mean(B[clusters == c, :], 0) for c in np.unique(clusters)], 0
                )
        fig = plot_solution(
            Z=Z,
            B=B,
            loss=loss,
            clusters=clusters,
            centers=centers,
            coefficients=coefficients,
            dimensions=dimensions,
            title=title,
            bars=bars,
            jitter=jitter,
            **kwargs,
        )
        if show:
            plt.show()
        else:
            return fig

    def plot_position(
        self,
        X: Optional[ToTensor] = None,
        Y: Optional[ToTensor] = None,
        index: Union[None, int, Sequence[int]] = None,
        title: str = "",
        jitter: Union[float, np.ndarray] = 0.0,
        selection: bool = True,
        legend_inside: bool = True,
        show: bool = True,
        *,
        Z: Optional[np.ndarray] = None,
        **kwargs: Any,
    ) -> Optional[sns.FacetGrid]:
        """Plot local losses for alternative locations for the selected item(s).

        Indicate the selected item(s) either via `X` and `Y` or via `index`.

        Args:
            X: Data matrix for the selected data item(s). Defaults to None.
            Y: Response matrix for the selected data item(s). Defaults to None.
            index: Index/indices of the selected data item(s). Defaults to None.
            title: Title of the plot. Defaults to "".
            jitter: Add random (normal) noise to the embedding, or a matrix with pre-generated noise matching Z. Defaults to 0.0.
            selection: Mark the selected data item(s), if index is given. Defaults to True.
            legend_inside: Move the legend inside the grid (if there is an empty cell). Defaults to True.
            show: Show the plot. Defaults to True.

        Keyword Args:
            Z: Override `self.get_Z()` in the plot. Defaults to None. **DEPRECATED**
            **kwargs: Additional arguments to `seaborn.relplot`.

        Returns:
            `seaborn.FacetGrid` if `show=False`.

        Deprecated:
            1.3: Parameter `Z`.
        """
        if Z is not None:
            _deprecated("Parameter 'Z' in Slisemap.plot_position")
        else:
            Z = self.get_Z(rotate=True)
        if index is None:
            _assert(
                X is not None and Y is not None,
                "Either index or X and Y must be given",
                Slisemap.plot_position,
            )
            L = self.get_L(X=X, Y=Y)
        else:
            if isinstance(index, int):
                index = [index]
            L = self.get_L()[:, index]
        g = plot_position(
            Z=Z,
            L=L,
            Zs=Z[index, :] if selection and index is not None else None,
            dimensions=self.metadata.get_dimensions(long=True),
            title=title,
            jitter=jitter,
            legend_inside=legend_inside,
            **kwargs,
        )
        if show:
            plt.show()
        else:
            return g

    def plot_dist(
        self,
        title: str = "",
        clusters: Union[None, int, np.ndarray] = None,
        unscale: bool = True,
        scatter: bool = False,
        jitter: float = 0.0,
        legend_inside: bool = True,
        show: bool = True,
        *,
        X: Optional[np.ndarray] = None,
        Y: Optional[np.ndarray] = None,
        B: Optional[np.ndarray] = None,
        variables: Optional[List[str]] = None,
        targets: Union[None, str, Sequence[str]] = None,
        **kwargs: Any,
    ) -> Optional[sns.FacetGrid]:
        """Plot the distribution of the variables, either as density plots (with clusters) or as scatterplots.

        Args:
            title: Title of the plot. Defaults to "".
            clusters: Number of cluster or vector of cluster labels. Defaults to None.
            scatter: Use scatterplots instead of density plots (clusters are ignored). Defaults to False.
            unscale: Unscale `X` and `Y` if scaling metadata has been given (see `Slisemap.metadata.set_scale_X`). Defaults to True.
            jitter: Add jitter to the scatterplots. Defaults to 0.0.
            legend_inside: Move the legend inside the grid (if there is an empty cell). Defaults to True.
            show: Show the plot. Defaults to True.

        Keyword Args:
            X: Override self.get_X(). Defaults to None. **DEPRECATED**
            Y: Override self.get_Y(). Defaults to None. **DEPRECATED**
            B: Override self.get_B() when finding the clusters (only used if clusters is an int). Defaults to None. **DEPRECATED**
            variables: List of variable names. Defaults to None. **DEPRECATED**
            targets: Target name(s). Defaults to None. **DEPRECATED**
            **kwargs: Additional arguments to `seaborn.relplot` or `seaborn.scatterplot`.

        Returns:
            `seaborn.FacetGrid` if `show=False`.

        Deprecated:
            1.3: Parameter `variables`, use `metadata.set_variables()` instead!
            1.3: Parameter `targets`, use `metadata.set_targets()` instead!
            1.3: Parameter `X`, use `metadata.set_scale_X()` instead (to automatically unscale)!
            1.3: Parameter `Y`, use `metadata.set_scale_Y()` instead (to automatically unscale)!
            1.3: Parameter `B`.
        """
        if X is None:
            X = self.get_X(intercept=False)
        else:
            _deprecated("Parameter 'X' in Slisemap.plot_dist")
        if Y is None:
            Y = self.get_Y()
        else:
            _deprecated("Parameter 'Y' in Slisemap.plot_dist")
            Y = np.reshape(Y, (X.shape[0], -1))
        if isinstance(X, torch.Tensor):
            X = tonp(X)
        if isinstance(Y, torch.Tensor):
            Y = tonp(Y)
        if unscale:
            X = self.metadata.unscale_X(X)
            Y = self.metadata.unscale_Y(Y)
        if variables is None:
            variables = self.metadata.get_variables(intercept=False)
        else:
            _deprecated(
                "Parameter 'variables' in 'Slisemap.plot_dist'",
                "'Slisemap.metadata.set_variables'",
            )
        if targets is not None:
            _deprecated(
                "Parameter 'targets' in 'Slisemap.plot_dist'",
                "'Slisemap.metadata.set_targets'",
            )
            if isinstance(targets, str):
                targets = [targets]
        else:
            targets = self.metadata.get_targets()
        if B is not None:
            _deprecated("Parameter 'B' in Slisemap.plot_dist")
        if isinstance(clusters, int):
            clusters, _ = self.get_model_clusters(clusters, B)
        loss = tonp(self.local_loss(self.predict(numpy=False), self._Y))

        g = plot_dist(
            X=X,
            Y=Y,
            Z=self.get_Z(),
            loss=loss,
            variables=self.metadata.get_variables(False),
            targets=self.metadata.get_targets(),
            dimensions=self.metadata.get_dimensions(long=True),
            title=title,
            clusters=clusters,
            scatter=scatter,
            jitter=jitter,
            legend_inside=legend_inside,
            **kwargs,
        )
        if show:
            plt.show()
        else:
            return g

__init__(X, y, radius=3.5, d=2, lasso=None, ridge=None, z_norm=0.01, intercept=True, local_model=LinearRegression, local_loss=None, coefficients=None, regularisation=None, distance=torch.cdist, kernel=softmax_row_kernel, B0=None, Z0=None, jit=True, random_state=None, dtype=torch.float32, device=None, cuda=None)

Create a Slisemap object.

Parameters:

Name Type Description Default
X ToTensor

Data matrix.

required
y ToTensor

Target vector or matrix.

required
radius float

The radius of the embedding Z. Defaults to 3.5.

3.5
d int

The number of embedding dimensions. Defaults to 2.

2
lasso Optional[float]

Lasso regularisation coefficient. Defaults to 0.0.

None
ridge Optional[float]

Ridge regularisation coefficient. Defaults to 0.0.

None
z_norm float

Z normalisation regularisation coefficient. Defaults to 0.01.

0.01
intercept bool

Should an intercept term be added to X. Defaults to True.

True
local_model Union[LocalModelCollection, CallableLike[predict]]

Local model prediction function (see slisemap.local_models.identify_local_model). Defaults to LinearRegression.

LinearRegression
local_loss Optional[CallableLike[loss]]

Local model loss function (see slisemap.local_models.identify_local_model). Defaults to None.

None
coefficients Union[None, int, CallableLike[coefficients]]

The number of local model coefficients (see slisemap.local_models.identify_local_model). Defaults to None.

None
regularisation Union[None, CallableLike[regularisation]]

Additional regularisation method (see slisemap.local_models.identify_local_model). Defaults to None.

None
distance Callable[[Tensor, Tensor], Tensor]

Distance function. Defaults to torch.cdist (Euclidean distance).

cdist
kernel Callable[[Tensor], Tensor]

Kernel function. Defaults to softmax_row_kernel.

softmax_row_kernel
B0 Optional[ToTensor]

Initial value for B (random if None). Defaults to None.

None
Z0 Optional[ToTensor]

Initial value for Z (PCA if None). Defaults to None.

None
jit bool

Just-In-Time compile the loss function for increased performance (see torch.jit.trace for caveats). Defaults to True.

True
random_state Optional[int]

Set an explicit seed for the random number generator (i.e. torch.manual_seed). Defaults to None.

None
dtype dtype

Floating type. Defaults to torch.float32.

float32
device Optional[device]

Torch device. Defaults to None.

None
cuda Optional[bool]

Use cuda if available. Defaults to True, if the data is large enough.

None
Deprecated

1.6: Use device instead of cuda to force a specific device. 1.6: The random_state has been moved to the escape function.

Source code in slisemap/slisemap.py
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
def __init__(
    self,
    X: ToTensor,
    y: ToTensor,
    radius: float = 3.5,
    d: int = 2,
    lasso: Optional[float] = None,
    ridge: Optional[float] = None,
    z_norm: float = 0.01,
    intercept: bool = True,
    local_model: Union[
        LocalModelCollection, CallableLike[ALocalModel.predict]
    ] = LinearRegression,
    local_loss: Optional[CallableLike[ALocalModel.loss]] = None,
    coefficients: Union[None, int, CallableLike[ALocalModel.coefficients]] = None,
    regularisation: Union[None, CallableLike[ALocalModel.regularisation]] = None,
    distance: Callable[[torch.Tensor, torch.Tensor], torch.Tensor] = torch.cdist,
    kernel: Callable[[torch.Tensor], torch.Tensor] = softmax_row_kernel,
    B0: Optional[ToTensor] = None,
    Z0: Optional[ToTensor] = None,
    jit: bool = True,
    random_state: Optional[int] = None,
    dtype: torch.dtype = torch.float32,
    device: Optional[torch.device] = None,
    cuda: Optional[bool] = None,
) -> None:
    """Create a Slisemap object.

    Args:
        X: Data matrix.
        y: Target vector or matrix.
        radius: The radius of the embedding Z. Defaults to 3.5.
        d: The number of embedding dimensions. Defaults to 2.
        lasso: Lasso regularisation coefficient. Defaults to 0.0.
        ridge: Ridge regularisation coefficient. Defaults to 0.0.
        z_norm: Z normalisation regularisation coefficient. Defaults to 0.01.
        intercept: Should an intercept term be added to `X`. Defaults to True.
        local_model: Local model prediction function (see [slisemap.local_models.identify_local_model][]). Defaults to [LinearRegression][slisemap.local_models.LinearRegression].
        local_loss: Local model loss function (see [slisemap.local_models.identify_local_model][]). Defaults to None.
        coefficients: The number of local model coefficients (see [slisemap.local_models.identify_local_model][]). Defaults to None.
        regularisation: Additional regularisation method (see [slisemap.local_models.identify_local_model][]). Defaults to None.
        distance: Distance function. Defaults to `torch.cdist` (Euclidean distance).
        kernel: Kernel function. Defaults to [softmax_row_kernel][slisemap.utils.softmax_row_kernel].
        B0: Initial value for B (random if None). Defaults to None.
        Z0: Initial value for Z (PCA if None). Defaults to None.
        jit: Just-In-Time compile the loss function for increased performance (see `torch.jit.trace` for caveats). Defaults to True.
        random_state: Set an explicit seed for the random number generator (i.e. `torch.manual_seed`). Defaults to None.
        dtype: Floating type. Defaults to `torch.float32`.
        device: Torch device. Defaults to None.
        cuda: Use cuda if available. Defaults to True, if the data is large enough.

    Deprecated:
        1.6: Use `device` instead of `cuda` to force a specific device.
        1.6: The `random_state` has been moved to the escape function.
    """
    for s in Slisemap.__slots__:
        # Initialise all attributes (to avoid attribute errors)
        setattr(self, s, None)
    if lasso is None and ridge is None:
        _warn(
            "Consider using regularisation!\n"
            + "Regularisation is important for handling small neighbourhoods, and also makes the local models more local. "
            + "Lasso (l1) and ridge (l2) regularisation is built-in, via the parameters `lasso` and `ridge`. "
            + "Set `lasso=0` to disable this warning (if no regularisation is really desired).",
            Slisemap,
        )
    local_model, local_loss, coefficients, regularisation = identify_local_model(
        local_model, local_loss, coefficients, regularisation
    )
    self.lasso = 0.0 if lasso is None else lasso
    self.ridge = 0.0 if ridge is None else ridge
    self.kernel = kernel
    self.distance = distance
    self.local_model = local_model
    self.local_loss = local_loss
    self.regularisation = regularisation
    self.z_norm = z_norm
    self.radius = radius
    self._intercept = intercept
    self._jit = jit
    self.metadata: Metadata = Metadata(self)

    if cuda is not None:
        _deprecated("cuda", "device")
    if device is None:
        if cuda is None and isinstance(X, torch.Tensor):
            device = X.device
        elif cuda is True:
            device = torch.device("cuda")
    tensorargs = {"device": device, "dtype": dtype}

    self._X, X_rows, X_columns = to_tensor(X, **tensorargs)
    if intercept:
        self._X = torch.cat((self._X, torch.ones_like(self._X[:, :1])), 1)
    n, m = self._X.shape
    self.metadata.set_variables(X_columns, intercept)

    self._Y, Y_rows, Y_columns = to_tensor(y, **tensorargs)
    self.metadata.set_targets(Y_columns)
    if len(self._Y.shape) == 1:
        self._Y = self._Y[:, None]
    _assert_shape(self._Y, (n, self._Y.shape[1]), "Y", Slisemap)

    if random_state is not None:
        self.random_state = random_state

    if Z0 is None:
        self._Z0 = self._X @ PCA_rotation(self._X, d)
        if self._Z0.shape[1] < d:
            _warn(
                "The number of embedding dimensions is larger than the number of data dimensions",
                Slisemap,
            )
            Z0fill = torch.zeros(size=[n, d - self._Z0.shape[1]], **tensorargs)
            self._Z0 = torch.cat((self._Z0, Z0fill), 1)
        Z_rows = None
    else:
        self._Z0, Z_rows, Z_columns = to_tensor(Z0, **tensorargs)
        self.metadata.set_dimensions(Z_columns)
        _assert_shape(self._Z0, (n, d), "Z0", Slisemap)
    if radius > 0:
        norm = 1 / (torch.sqrt(torch.sum(self._Z0**2) / self._Z0.shape[0]) + 1e-8)
        self._Z0 = self._Z0 * norm
    self._Z = self._Z0.detach().clone()

    if callable(coefficients):
        coefficients = coefficients(self._X, self._Y)
    if B0 is None:
        B0 = global_model(
            X=self._X,
            Y=self._Y,
            local_model=self.local_model,
            local_loss=self.local_loss,
            coefficients=coefficients,
            lasso=self.lasso,
            ridge=self.ridge,
        ).detach()
        if not torch.all(torch.isfinite(B0)):
            _warn(
                "Optimising a global model as initialisation resulted in non-finite values. Consider using stronger regularisation (increase `lasso` or `ridge`).",
                Slisemap,
            )
            B0 = torch.zeros_like(B0)
        self._B0 = B0.expand((n, coefficients))
        B_rows = None
    else:
        self._B0, B_rows, B_columns = to_tensor(B0, **tensorargs)
        if self._B0.shape[0] == 1:
            self._B0 = self._B0.expand((self.n, coefficients))
        _assert_shape(self._B0, (n, coefficients), "B0", Slisemap)
        self.metadata.set_coefficients(B_columns)
    self._B = self._B0.clone()
    self.metadata.set_rows(X_rows, Y_rows, B_rows, Z_rows)

    if (
        device is None
        and self.n**2 * self.m * self.o > 1_000_000
        and torch.cuda.is_available()
    ):
        self.cuda()

n: int property

The number of data items.

m: int property

The number of variables (including potential intercept).

o: int property

The number of target variables (i.e. the number of classes).

d: int property writable

The number of embedding dimensions.

q: int property

The number of local model coefficients.

intercept: bool property

Is an intercept column added to the data?.

radius: float property writable

The radius of the embedding.

lasso: float property writable

Lasso regularisation strength.

ridge: float property writable

Ridge regularisation strength.

z_norm: float property writable

Z normalisation regularisation strength.

local_model: CallableLike[ALocalModel.predict] property writable

Local model prediction function. Takes in X[n, m] and B[n, q], and returns Ytilde[n, n, o].

local_loss: CallableLike[ALocalModel.loss] property writable

Local model loss function. Takes in Ytilde[n, n, o] and Y[n, o] and returns L[n, n].

regularisation: CallableLike[ALocalModel.regularisation] property writable

Regularisation function. Takes in X, Y, Bp, Z, and Ytilde and returns an additional loss scalar.

distance: Callable[[torch.Tensor, torch.Tensor], torch.Tensor] property writable

Distance function. Takes in Z[n1, d] and Z[n2, d], and returns D[n1, n2].

kernel: Callable[[torch.Tensor], torch.Tensor] property writable

Kernel function. Takes in D[n, n] and returns W[n, n].

jit: bool property writable

Just-In-Time compile the loss function?.

random_state: None = property(fset=random_state, doc=random_state.__doc__) class-attribute instance-attribute

Set the seed for the random number generator specific for this object (None reverts to the global torch PRNG).

Deprecated

1.6: Use Slisemap.escape(random_state=...) instead.

tensorargs: Dict[str, Any] property

When creating a new torch.Tensor add these keyword arguments to match the dtype and device of this Slisemap object.

cuda(**kwargs)

Move the tensors to CUDA memory (and run the calculations there).

Note that this resets the random state.

Other Parameters:

Name Type Description
**kwargs Any

Optional arguments to torch.Tensor.cuda

Source code in slisemap/slisemap.py
477
478
479
480
481
482
483
484
485
486
487
488
489
490
def cuda(self, **kwargs: Any) -> None:
    """Move the tensors to CUDA memory (and run the calculations there).

    Note that this resets the random state.

    Keyword Args:
        **kwargs: Optional arguments to `torch.Tensor.cuda`
    """
    X = self._X.cuda(**kwargs)
    self._X = X
    self._Y = self._Y.cuda(**kwargs)
    self._Z = self._Z.detach().cuda(**kwargs)
    self._B = self._B.detach().cuda(**kwargs)
    self._loss = None  # invalidate cached loss function

cpu(**kwargs)

Move the tensors to CPU memory (and run the calculations there).

Note that this resets the random state.

Other Parameters:

Name Type Description
**kwargs Any

Optional arguments to torch.Tensor.cpu

Source code in slisemap/slisemap.py
492
493
494
495
496
497
498
499
500
501
502
503
504
505
def cpu(self, **kwargs: Any) -> None:
    """Move the tensors to CPU memory (and run the calculations there).

    Note that this resets the random state.

    Keyword Args:
        **kwargs: Optional arguments to `torch.Tensor.cpu`
    """
    X = self._X.cpu(**kwargs)
    self._X = X
    self._Y = self._Y.cpu(**kwargs)
    self._Z = self._Z.detach().cpu(**kwargs)
    self._B = self._B.detach().cpu(**kwargs)
    self._loss = None  # invalidate cached loss function

get_Z(scale=True, rotate=False, numpy=True)

Get the Z matrix.

Parameters:

Name Type Description Default
scale bool

Scale the returned Z to match self.radius. Defaults to True.

True
rotate bool

Rotate the returned Z so that the first dimension is the major axis. Defaults to False.

False
numpy bool

Return the matrix as a numpy (True) or pytorch (False) matrix. Defaults to True.

True

Returns:

Type Description
Union[ndarray, Tensor]

The Z matrix.

Source code in slisemap/slisemap.py
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
def get_Z(
    self, scale: bool = True, rotate: bool = False, numpy: bool = True
) -> Union[np.ndarray, torch.Tensor]:
    """Get the Z matrix.

    Args:
        scale: Scale the returned `Z` to match self.radius. Defaults to True.
        rotate: Rotate the returned `Z` so that the first dimension is the major axis. Defaults to False.
        numpy: Return the matrix as a numpy (True) or pytorch (False) matrix. Defaults to True.

    Returns:
       The `Z` matrix.
    """
    self._normalise()
    Z = self._Z * self.radius if scale and self.radius > 0 else self._Z
    if rotate:
        Z = Z @ PCA_rotation(Z, center=False)
    return tonp(Z) if numpy else Z

get_B(numpy=True)

Get the B matrix.

Parameters:

Name Type Description Default
numpy bool

Return the matrix as a numpy (True) or pytorch (False) matrix. Defaults to True.

True

Returns:

Type Description
Union[ndarray, Tensor]

The B matrix.

Source code in slisemap/slisemap.py
591
592
593
594
595
596
597
598
599
600
def get_B(self, numpy: bool = True) -> Union[np.ndarray, torch.Tensor]:
    """Get the B matrix.

    Args:
        numpy: Return the matrix as a numpy (True) or pytorch (False) matrix. Defaults to True.

    Returns:
       The `B` matrix.
    """
    return tonp(self._B) if numpy else self._B

get_D(numpy=True)

Get the embedding distance matrix.

Parameters:

Name Type Description Default
numpy bool

Return the matrix as a numpy (True) or pytorch (False) matrix. Defaults to True.

True

Returns:

Type Description
Union[ndarray, Tensor]

The D matrix.

Source code in slisemap/slisemap.py
602
603
604
605
606
607
608
609
610
611
612
613
def get_D(self, numpy: bool = True) -> Union[np.ndarray, torch.Tensor]:
    """Get the embedding distance matrix.

    Args:
        numpy: Return the matrix as a numpy (True) or pytorch (False) matrix. Defaults to True.

    Returns:
       The `D` matrix.
    """
    Z = self.get_Z(rotate=False, scale=True, numpy=False)
    D = self._distance(Z, Z)
    return tonp(D) if numpy else D

get_L(X=None, Y=None, numpy=True)

Get the loss matrix: [B.shape[0], X.shape[0]].

Parameters:

Name Type Description Default
X Optional[ToTensor]

Optional replacement for the training X. Defaults to None.

None
Y Optional[ToTensor]

Optional replacement for the training Y. Defaults to None.

None
numpy bool

Return the matrix as a numpy (True) or pytorch (False) matrix. Defaults to True.

True

Returns:

Type Description
Union[ndarray, Tensor]

The L matrix.

Source code in slisemap/slisemap.py
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
def get_L(
    self,
    X: Optional[ToTensor] = None,
    Y: Optional[ToTensor] = None,
    numpy: bool = True,
) -> Union[np.ndarray, torch.Tensor]:
    """Get the loss matrix: [B.shape[0], X.shape[0]].

    Args:
        X: Optional replacement for the training X. Defaults to None.
        Y: Optional replacement for the training Y. Defaults to None.
        numpy: Return the matrix as a numpy (True) or pytorch (False) matrix. Defaults to True.

    Returns:
       The `L` matrix.
    """
    X = self._as_new_X(X)
    Y = self._as_new_Y(Y, X.shape[0])
    L = self.local_loss(self.local_model(X, self._B), Y)
    return tonp(L) if numpy else L

get_W(numpy=True)

Get the weight matrix.

Parameters:

Name Type Description Default
numpy bool

Return the matrix as a numpy.ndarray instead of a torch.Tensor. Defaults to True.

True

Returns:

Type Description
Union[ndarray, Tensor]

The W matrix.

Source code in slisemap/slisemap.py
636
637
638
639
640
641
642
643
644
645
646
def get_W(self, numpy: bool = True) -> Union[np.ndarray, torch.Tensor]:
    """Get the weight matrix.

    Args:
        numpy: Return the matrix as a numpy.ndarray instead of a torch.Tensor. Defaults to True.

    Returns:
       The `W` matrix.
    """
    W = self.kernel(self.get_D(numpy=False))
    return tonp(W) if numpy else W

get_X(numpy=True, intercept=True)

Get the data matrix.

Parameters:

Name Type Description Default
numpy bool

Return the matrix as a numpy.ndarray instead of a torch.Tensor. Defaults to True.

True
intercept bool

Include the intercept column (if self.intercept == True). Defaults to True.

True

Returns:

Type Description
Union[ndarray, Tensor]

The X matrix.

Source code in slisemap/slisemap.py
648
649
650
651
652
653
654
655
656
657
658
659
660
661
def get_X(
    self, numpy: bool = True, intercept: bool = True
) -> Union[np.ndarray, torch.Tensor]:
    """Get the data matrix.

    Args:
        numpy: Return the matrix as a numpy.ndarray instead of a torch.Tensor. Defaults to True.
        intercept: Include the intercept column (if `self.intercept == True`). Defaults to True.

    Returns:
       The `X` matrix.
    """
    X = self._X if intercept or not self._intercept else self._X[:, :-1]
    return tonp(X) if numpy else X

get_Y(numpy=True, ravel=False)

Get the target matrix.

Parameters:

Name Type Description Default
numpy bool

Return the matrix as a numpy.ndarray instead of a torch.Tensor. Defaults to True.

True
ravel bool

Remove the second dimension if it is singular (i.e. turn it into a vector). Defaults to False.

False

Returns:

Type Description
Union[ndarray, Tensor]

The Y matrix.

Source code in slisemap/slisemap.py
663
664
665
666
667
668
669
670
671
672
673
674
675
676
def get_Y(
    self, numpy: bool = True, ravel: bool = False
) -> Union[np.ndarray, torch.Tensor]:
    """Get the target matrix.

    Args:
        numpy: Return the matrix as a numpy.ndarray instead of a torch.Tensor. Defaults to True.
        ravel: Remove the second dimension if it is singular (i.e. turn it into a vector). Defaults to False.

    Returns:
       The `Y` matrix.
    """
    Y = self._Y.ravel() if ravel else self._Y
    return tonp(Y) if numpy else Y

value(individual=False, numpy=True)

Calculate the loss value.

Parameters:

Name Type Description Default
individual bool

Give loss individual loss values for the data points. Defaults to False.

False
numpy bool

Return the loss as a numpy.ndarray or float instead of a torch.Tensor. Defaults to True.

True

Returns:

Type Description
Union[float, ndarray, Tensor]

The loss value(s).

Source code in slisemap/slisemap.py
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
def value(
    self, individual: bool = False, numpy: bool = True
) -> Union[float, np.ndarray, torch.Tensor]:
    """Calculate the loss value.

    Args:
        individual: Give loss individual loss values for the data points. Defaults to False.
        numpy: Return the loss as a numpy.ndarray or float instead of a torch.Tensor. Defaults to True.

    Returns:
        The loss value(s).
    """
    loss = self._get_loss_fn(individual)
    loss = loss(X=self._X, Y=self._Y, B=self._B, Z=self._Z)
    if individual:
        return tonp(loss) if numpy else loss
    else:
        return loss.cpu().item() if numpy else loss

entropy(aggregate=True, numpy=True)

Compute row-wise entropy of the W matrix induced by Z. DEPRECATED.

Parameters:

Name Type Description Default
aggregate bool

Aggregate the row-wise entropies into one scalar. Defaults to True.

True
numpy bool

Return a numpy.ndarray or float instead of a torch.Tensor. Defaults to True.

True

Returns:

Type Description
Union[float, ndarray, Tensor]

The entropy.

Deprecated

1.4: Use slisemap.metrics.entropy instead.

Source code in slisemap/slisemap.py
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
def entropy(
    self, aggregate: bool = True, numpy: bool = True
) -> Union[float, np.ndarray, torch.Tensor]:
    """Compute row-wise entropy of the `W` matrix induced by `Z`. **DEPRECATED**.

    Args:
        aggregate: Aggregate the row-wise entropies into one scalar. Defaults to True.
        numpy: Return a `numpy.ndarray` or `float` instead of a `torch.Tensor`. Defaults to True.

    Returns:
        The entropy.

    Deprecated:
        1.4: Use [slisemap.metrics.entropy][slisemap.metrics.entropy] instead.
    """
    _deprecated(Slisemap.entropy, "slisemap.metrics.entropy")
    from slisemap.metrics import entropy

    return entropy(self, aggregate, numpy)

lbfgs(max_iter=500, verbose=False, *, only_B=False, **kwargs)

Optimise Slisemap using LBFGS.

Parameters:

Name Type Description Default
max_iter int

Maximum number of LBFGS iterations. Defaults to 500.

500
verbose bool

Print status messages. Defaults to False.

False

Other Parameters:

Name Type Description
only_B bool

Only optimise B. Defaults to False.

**kwargs Any

Optional keyword arguments to LBFGS.

Returns:

Type Description
float

The loss value.

Source code in slisemap/slisemap.py
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
def lbfgs(
    self,
    max_iter: int = 500,
    verbose: bool = False,
    *,
    only_B: bool = False,
    **kwargs: Any,
) -> float:
    """Optimise Slisemap using LBFGS.

    Args:
        max_iter: Maximum number of LBFGS iterations. Defaults to 500.
        verbose: Print status messages. Defaults to False.

    Keyword Args:
        only_B: Only optimise B. Defaults to False.
        **kwargs: Optional keyword arguments to LBFGS.

    Returns:
        The loss value.
    """
    Z = self._Z.detach().clone().requires_grad_(True)
    B = self._B.detach().clone().requires_grad_(True)

    loss_ = self._get_loss_fn()
    loss_fn = lambda: loss_(self._X, self._Y, B, Z)  # noqa: E731
    pre_loss = loss_fn().cpu().detach().item()
    LBFGS(
        loss_fn,
        [B] if only_B else [Z, B],
        max_iter=max_iter,
        verbose=verbose,
        **kwargs,
    )
    post_loss = loss_fn().cpu().detach().item()

    if np.isnan(post_loss):
        _warn(
            "An LBFGS optimisation resulted in `nan` (try strengthening the regularisation or reducing the radius)",
            Slisemap.lbfgs,
        )
        # Some datasets (with logistic local models) are initially numerically unstable.
        # Just running LBFGS for one iteration seems to avoid those issues.
        Z = self._Z.detach().requires_grad_(True)
        B = self._B.detach().requires_grad_(True)
        LBFGS(
            loss_fn,
            [B] if only_B else [Z, B],
            max_iter=1,
            verbose=verbose,
            **kwargs,
        )
        post_loss = loss_fn().cpu().detach().item()
    if post_loss < pre_loss:
        self._Z = Z.detach()
        self._B = B.detach()
        self._normalise()
        return post_loss
    else:
        if verbose:
            print("Slisemap.lbfgs: No improvement found")
        return pre_loss

escape(force_move=True, escape_fn=escape_neighbourhood, lerp=0.95, noise=0.0, random_state=42)

Try to escape a local optimum by moving the items (embedding and local model) to the neighbourhoods best suited for them.

This is done by finding another item (in the optimal neighbourhood) and copying its values for Z and B.

Parameters:

Name Type Description Default
force_move bool

Do not allow the items to pair with themselves. Defaults to True.

True
escape_fn Callable

Escape function (see slisemap.escape). Defaults to escape_neighbourhood.

escape_neighbourhood
lerp float

Linear interpolation between the old (0.0) and the new (1.0) embedding position. Defaults to 0.95.

0.95
noise float

Scale of the noise added to the embedding matrix if it looses rank after an escape (recommended for gradient based optimisers). Defaults to 1e-4.

0.0
random_state int

Seed for the random generator if noise > 0.0. Defaults to 42.

42
Source code in slisemap/slisemap.py
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
def escape(
    self,
    force_move: bool = True,
    escape_fn: Callable = escape_neighbourhood,
    lerp: float = 0.95,
    noise: float = 0.0,
    random_state: int = 42,
) -> None:
    """Try to escape a local optimum by moving the items (embedding and local model) to the neighbourhoods best suited for them.

    This is done by finding another item (in the optimal neighbourhood) and copying its values for Z and B.

    Args:
        force_move: Do not allow the items to pair with themselves. Defaults to True.
        escape_fn: Escape function (see [slisemap.escape][]). Defaults to [escape_neighbourhood][slisemap.escape.escape_neighbourhood].
        lerp: Linear interpolation between the old (0.0) and the new (1.0) embedding position. Defaults to 0.95.
        noise: Scale of the noise added to the embedding matrix if it looses rank after an escape (recommended for gradient based optimisers). Defaults to 1e-4.
        random_state: Seed for the random generator if `noise > 0.0`. Defaults to 42.
    """
    if lerp <= 0.0:
        _warn("Escaping with `lerp <= 0` does nothing!", Slisemap.escape)
        return
    B, Z = escape_fn(
        X=self._X,
        Y=self._Y,
        B=self._B,
        Z=self._Z,
        local_model=self.local_model,
        local_loss=self.local_loss,
        distance=self.distance,
        kernel=self.kernel,
        radius=self.radius,
        force_move=force_move,
        jit=self.jit,
    )
    if lerp >= 1.0:
        self._B, self._Z = B, Z
    else:
        self._B = (1.0 - lerp) * self._B + lerp * B
        self._Z = (1.0 - lerp) * self._Z + lerp * Z
    if noise > 0.0:
        rank = torch.linalg.matrix_rank(self._Z - torch.mean(self._Z, 0, True))
        if rank.item() < min(*self._Z.shape):
            generator = torch.Generator(self._Z.device).manual_seed(random_state)
            self._Z = torch.normal(self._Z, noise, generator=generator)
    self._normalise()

optimise(patience=2, max_escapes=100, max_iter=500, verbose=0, only_B=False, escape_kws={}, *, escape_fn=None, noise=None, **kwargs)

Optimise Slisemap by alternating between self.lbfgs() and self.escape() until convergence.

Statistics for the optimisation can be found in self.metadata["optimize_time"] and self.metadata["optimize_loss"].

Parameters:

Name Type Description Default
patience int

Number of escapes without improvement before stopping. Defaults to 2.

2
max_escapes int

Maximum numbers optimisation rounds. Defaults to 100.

100
max_iter int

Maximum number of LBFGS iterations per round. Defaults to 500.

500
verbose Literal[0, 1, 2]

Print status messages (0: no, 1: some, 2: all). Defaults to 0.

0
only_B bool

Only optimise the local models, not the embedding. Defaults to False.

False
escape_kws Dict[str, object]

Optional keyword arguments to self.escape(). Defaults to {}.

{}

Other Parameters:

Name Type Description
escape_fn Optional[CallableLike[escape_neighbourhood]]

Escape function (see slisemap.escape). Defaults to escape_neighbourhood.

noise Optional[float]

Scale of the noise added to the embedding matrix if it looses rank after an escape.

**kwargs Any

Optional keyword arguments to Slisemap.lbfgs.

Returns:

Type Description
float

The loss value.

Deprecated

1.6: The noise argument, use escape_kws={"noise": noise} instead. 1.6: The escape_fn argument, use escape_kws={"escape_fn": escape_fn} instead.

Source code in slisemap/slisemap.py
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
def optimise(
    self,
    patience: int = 2,
    max_escapes: int = 100,
    max_iter: int = 500,
    verbose: Literal[0, 1, 2] = 0,
    only_B: bool = False,
    escape_kws: Dict[str, object] = {},
    *,
    escape_fn: Optional[CallableLike[escape_neighbourhood]] = None,
    noise: Optional[float] = None,
    **kwargs: Any,
) -> float:
    """Optimise Slisemap by alternating between [self.lbfgs()][slisemap.slisemap.Slisemap.lbfgs] and [self.escape()][slisemap.slisemap.Slisemap.escape] until convergence.

    Statistics for the optimisation can be found in `self.metadata["optimize_time"]` and `self.metadata["optimize_loss"]`.

    Args:
        patience: Number of escapes without improvement before stopping. Defaults to 2.
        max_escapes: Maximum numbers optimisation rounds. Defaults to 100.
        max_iter: Maximum number of LBFGS iterations per round. Defaults to 500.
        verbose: Print status messages (0: no, 1: some, 2: all). Defaults to 0.
        only_B: Only optimise the local models, not the embedding. Defaults to False.
        escape_kws: Optional keyword arguments to [self.escape()][slisemap.slisemap.Slisemap.escape]. Defaults to {}.

    Keyword Args:
        escape_fn: Escape function (see [slisemap.escape][]). Defaults to [escape_neighbourhood][slisemap.escape.escape_neighbourhood].
        noise: Scale of the noise added to the embedding matrix if it looses rank after an escape.
        **kwargs: Optional keyword arguments to Slisemap.lbfgs.

    Returns:
        The loss value.

    Deprecated:
        1.6: The `noise` argument, use `escape_kws={"noise": noise}` instead.
        1.6: The `escape_fn` argument, use `escape_kws={"escape_fn": escape_fn}` instead.
    """
    if noise is not None:
        _deprecated(
            "Slisemap.optimise(noise=noise, ...)",
            'Slisemap.optimise(escape_kws={"noise":noise}, ...)',
        )
        escape_kws.setdefault("noise", noise)
    if escape_fn is not None:
        _deprecated(
            "Slisemap.optimise(escape_fn=escape_fn, ...)",
            'Slisemap.optimise(escape_kws={"escape_fn":escape_fn}, ...)',
        )
        escape_kws.setdefault("escape_fn", escape_fn)
    loss = np.repeat(np.inf, 2)
    time = timer()
    loss[0] = self.lbfgs(
        max_iter=max_iter,
        only_B=True,
        increase_tolerance=not only_B,
        verbose=verbose > 1,
        **kwargs,
    )
    history = [loss[0]]
    if verbose:
        i = 0
        print(f"Slisemap.optimise LBFGS  {i:2d}: {loss[0]:.2f}")
    if only_B:
        self.metadata["optimize_time"] = timer() - time
        self.metadata["optimize_loss"] = history
        return loss[0]
    cc = CheckConvergence(patience, max_escapes)
    while not cc.has_converged(loss, self.copy, verbose=verbose > 1):
        self.escape(random_state=cc.iter, **escape_kws)
        loss[1] = self.value()
        if verbose:
            print(f"Slisemap.optimise Escape {i:2d}: {loss[1]:.2f}")
        loss[0] = self.lbfgs(
            max_iter=max_iter,
            increase_tolerance=True,
            verbose=verbose > 1,
            **kwargs,
        )
        history.append(loss[1])
        history.append(loss[0])
        if verbose:
            i += 1
            print(f"Slisemap.optimise LBFGS  {i:2d}: {loss[0]:.2f}")
    self._Z = cc.optimal._Z
    self._B = cc.optimal._B
    loss = self.lbfgs(
        max_iter=max_iter * 2,
        increase_tolerance=False,
        verbose=verbose > 1,
        **kwargs,
    )
    history.append(loss)
    self.metadata["optimize_time"] = timer() - time
    self.metadata["optimize_loss"] = history
    if verbose:
        print(f"Slisemap.optimise Final    : {loss:.2f}")
    return loss

fit_new(Xnew, ynew, optimise=True, between=True, escape_fn=escape_neighbourhood, loss=False, verbose=False, numpy=True, **kwargs)

Generate embedding(s) and model(s) for new data item(s).

This works as follows
  1. Find good initial embedding(s) and local model(s) using the escape_fn.
  2. Optionally finetune the embedding(s) and model(s) using LBFG.

Parameters:

Name Type Description Default
Xnew ToTensor

New data point(s).

required
ynew ToTensor

New target(s).

required
optimise bool

Should the embedding and model be optimised (after finding the neighbourhood). Defaults to True.

True
between bool

If optimise=True, should the new points affect each other? Defaults to True.

True
escape_fn Callable

Escape function (see slisemap.escape). Defaults to escape_neighbourhood.

escape_neighbourhood
loss bool

Return a vector of individual losses for the new items. Defaults to False.

False
verbose bool

Print status messages. Defaults to False.

False
numpy bool

Return the results as numpy (True) or pytorch (False) matrices. Defaults to True.

True

Other Parameters:

Name Type Description
**kwargs Any

Optional keyword arguments to LBFGS.

Returns:

Name Type Description
Bnew Union[Tuple[ndarray, ndarray, Optional[ndarray]], Tuple[Tensor, Tensor, Optional[Tensor]]]

Local model coefficients for the new data.

Znew Union[Tuple[ndarray, ndarray, Optional[ndarray]], Tuple[Tensor, Tensor, Optional[Tensor]]]

Embedding(s) for the new data.

loss Union[Tuple[ndarray, ndarray, Optional[ndarray]], Tuple[Tensor, Tensor, Optional[Tensor]]]

Individual losses if loss=True.

Source code in slisemap/slisemap.py
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
def fit_new(
    self,
    Xnew: ToTensor,
    ynew: ToTensor,
    optimise: bool = True,
    between: bool = True,
    escape_fn: Callable = escape_neighbourhood,
    loss: bool = False,
    verbose: bool = False,
    numpy: bool = True,
    **kwargs: Any,
) -> Union[
    Tuple[np.ndarray, np.ndarray, Optional[np.ndarray]],
    Tuple[torch.Tensor, torch.Tensor, Optional[torch.Tensor]],
]:
    """Generate embedding(s) and model(s) for new data item(s).

    This works as follows:
        1. Find good initial embedding(s) and local model(s) using the escape_fn.
        2. Optionally finetune the embedding(s) and model(s) using LBFG.

    Args:
        Xnew: New data point(s).
        ynew: New target(s).
        optimise: Should the embedding and model be optimised (after finding the neighbourhood). Defaults to True.
        between: If `optimise=True`, should the new points affect each other? Defaults to True.
        escape_fn: Escape function (see [slisemap.escape][]). Defaults to [escape_neighbourhood][slisemap.escape.escape_neighbourhood].
        loss: Return a vector of individual losses for the new items. Defaults to False.
        verbose: Print status messages. Defaults to False.
        numpy: Return the results as numpy (True) or pytorch (False) matrices. Defaults to True.

    Keyword Args:
        **kwargs: Optional keyword arguments to LBFGS.

    Returns:
        Bnew: Local model coefficients for the new data.
        Znew: Embedding(s) for the new data.
        loss: Individual losses if `loss=True`.
    """
    Xnew = self._as_new_X(Xnew)
    n = Xnew.shape[0]
    ynew = self._as_new_Y(ynew, n)
    if verbose:
        print("Escaping the new data")
    Bnew, Znew = escape_fn(
        X=Xnew,
        Y=ynew,
        B=self._B,
        Z=self._Z,
        local_model=self.local_model,
        local_loss=self.local_loss,
        distance=self.distance,
        kernel=self.kernel,
        radius=self.radius,
        force_move=False,
        Xold=self._X,
        Yold=self._Y,
        jit=self.jit,
    )
    if verbose:
        Zrad = torch.sqrt(torch.sum(Znew**2) / n).cpu().detach().item()
        print("  radius(Z_new) =", Zrad)

    if optimise:
        if verbose:
            print("Optimising the new data")
        lf, set_new = make_marginal_loss(
            X=self._X,
            Y=self._Y,
            B=self._B,
            Z=self._Z,
            Xnew=Xnew if between else Xnew[:1],
            Ynew=ynew if between else ynew[:1],
            local_model=self.local_model,
            local_loss=self.local_loss,
            distance=self.distance,
            kernel=self.kernel,
            radius=self.radius,
            lasso=self.lasso,
            ridge=self.ridge,
            jit=self.jit,
        )
        if between:
            Bnew = Bnew.detach().requires_grad_(True)
            Znew = Znew.detach().requires_grad_(True)
            LBFGS(lambda: lf(Bnew, Znew), [Bnew, Znew], **kwargs)
        else:
            for j in range(n):
                set_new(Xnew[None, j], ynew[None, j])
                Bi = Bnew[None, j].detach().clone().requires_grad_(True)
                Zi = Znew[None, j].detach().clone().requires_grad_(True)
                LBFGS(lambda: lf(Bi, Zi), [Bi, Zi], **kwargs)  # noqa: B023
                Bnew[j] = Bi.detach()
                Znew[j] = Zi.detach()
        if verbose:
            Zrad = torch.sqrt(torch.sum(Znew**2) / n).cpu().detach().item()
            print("  radius(Z_new) =", Zrad)
    if self.radius > 0:
        if verbose:
            print("Normalising the solution")
        norm = self.radius / (torch.sqrt(torch.sum(self._Z**2) / self.n) + 1e-8)
        Zout = Znew * norm
        if verbose:
            Zrad = torch.sqrt(torch.sum(Zout**2) / n).cpu().detach().item()
            print("  radius(Z_new) =", Zrad)
    else:
        Zout = Znew
    if loss:
        if verbose:
            print("Calculating individual losses")
        lf = self._get_loss_fn(individual=True)
        if between:
            loss = lf(
                X=torch.cat((self._X, Xnew), 0),
                Y=torch.cat((self._Y, ynew), 0),
                B=torch.cat((self._B, Bnew), 0),
                Z=torch.cat((self._Z, Znew), 0),
            )[self.n :]
        else:
            if self._jit:
                lf = torch.jit.trace(lf, (Xnew[:1], ynew[:1], Bnew[:1], Znew[:1]))
            loss = torch.zeros(n, **self.tensorargs)
            for j in range(n):
                loss[j] = lf(
                    X=torch.cat((self._X, Xnew[None, j]), 0),
                    Y=torch.cat((self._Y, ynew[None, j]), 0),
                    B=torch.cat((self._B, Bnew[None, j]), 0),
                    Z=torch.cat((self._Z, Znew[None, j]), 0),
                )[-1]
        if verbose:
            print("  mean(loss) =", loss.detach().mean().cpu().item())
        return (tonp(Bnew), tonp(Zout), tonp(loss)) if numpy else (Bnew, Zout, loss)
    else:
        return (tonp(Bnew), tonp(Zout)) if numpy else (Bnew, Zout)

predict(X=None, B=None, Z=None, numpy=True, *, Xnew=None, Znew=None, **kwargs)

Predict new outcomes when the data and embedding or local model is known.

If the local models B are known they are used. If the embeddings Z are known they are used to find new local models. Ohterwise the closest training X gives the B.

Parameters:

Name Type Description Default
X Optional[ToTensor]

Data matrix (set to None to use the training data). Defaults to None.

None
B Optional[ToTensor]

Coefficient matrix. Defaults to None.

None
Z Optional[ToTensor]

Embedding matrix. Defaults to None.

None
numpy bool

Return the result as a numpy (True) or a pytorch (False) matrix. Defaults to True.

True

Other Parameters:

Name Type Description
**kwargs Any

Optional keyword arguments to LBFGS.

Returns:

Type Description
ndarray

Prediction matrix.

Deprecated

1.4: Renamed Xnew, Znew to X, Z.

Source code in slisemap/slisemap.py
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
def predict(  # noqa: D417
    self,
    X: Optional[ToTensor] = None,
    B: Optional[ToTensor] = None,
    Z: Optional[ToTensor] = None,
    numpy: bool = True,
    *,
    Xnew: Optional[ToTensor] = None,
    Znew: Optional[ToTensor] = None,
    **kwargs: Any,
) -> np.ndarray:
    """Predict new outcomes when the data and embedding or local model is known.

    If the local models `B` are known they are used.
    If the embeddings `Z` are known they are used to find new local models.
    Ohterwise the closest training X gives the `B`.

    Args:
        X: Data matrix (set to None to use the training data). Defaults to None.
        B: Coefficient matrix. Defaults to None.
        Z: Embedding matrix. Defaults to None.
        numpy: Return the result as a numpy (True) or a pytorch (False) matrix. Defaults to True.

    Keyword Args:
        **kwargs: Optional keyword arguments to LBFGS.

    Returns:
        Prediction matrix.

    Deprecated:
        1.4: Renamed Xnew, Znew to X, Z.
    """
    if Xnew is not None:
        X = Xnew
        _deprecated(
            "Parameter 'Xnew' in Slisemap.predict",
            "parameter 'X' in Slisemap.predict",
        )
    if Znew is not None:
        Z = Znew
        _deprecated(
            "Parameter 'Znew' in Slisemap.predict",
            "parameter 'Z' in Slisemap.predict",
        )
    if X is None:
        X = self._X
        if B is None and Z is None:
            B = self._B
    else:
        X = self._as_new_X(X)
        if B is None and Z is None:
            D = torch.cdist(X, self._X)
            B = self._B[D.argmin(1), :]
    if B is None:
        Z = torch.atleast_2d(to_tensor(Z, **self.tensorargs)[0])
        _assert_shape(Z, (X.shape[0], self.d), "Z", Slisemap.predict)
        D = self._distance(Z, self._Z)
        W = self.kernel(D)
        B = self._B[torch.argmin(D, 1)].clone().requires_grad_(True)
        yhat = lambda: (  # noqa: E731
            torch.sum(W * self.local_loss(self.local_model(self._X, B), self._Y))
            + self.lasso * torch.sum(torch.abs(B))
            + self.ridge * torch.sum(B**2)
        )
        LBFGS(yhat, [B], **kwargs)
    else:
        B = torch.atleast_2d(to_tensor(B, **self.tensorargs)[0])
        _assert_shape(B, (X.shape[0], self.q), "B", Slisemap.predict)
    yhat = local_predict(X, B, self.local_model)
    return tonp(yhat) if numpy else yhat

copy()

Make a copy of this Slisemap that references as much of the same torch-data as possible.

Returns:

Type Description
Slisemap

An almost shallow copy of this Slisemap object.

Source code in slisemap/slisemap.py
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
def copy(self) -> "Slisemap":
    """Make a copy of this Slisemap that references as much of the same torch-data as possible.

    Returns:
        An almost shallow copy of this Slisemap object.
    """
    other = copy(self)  # Shallow copy!
    # Deep copy these:
    other._B = other._B.clone().detach()
    other._Z = other._Z.clone().detach()
    return other

restore()

Reset B and Z to their initial values B0 and Z0.

Deprecated

1.6: Use Slisemap.copy before any optimisation instead.

Source code in slisemap/slisemap.py
1152
1153
1154
1155
1156
1157
1158
1159
1160
def restore(self) -> None:
    """Reset B and Z to their initial values B0 and Z0.

    Deprecated:
        1.6: Use `Slisemap.copy` before any optimisation instead.
    """
    _deprecated(Slisemap.restore, Slisemap.copy)
    self._Z = self._Z0.clone().detach()
    self._B = self._B0.clone().detach()

save(f, any_extension=False, compress=True, **kwargs)

Save the Slisemap object to a file.

This method uses torch.save (which uses pickle for the non-pytorch properties). This means that lambda-functions are not supported (unless a custom pickle module is used, see torch.save).

Note that the random state is not saved, only the initial seed (if set).

The default file extension is ".sm".

Parameters:

Name Type Description Default
f Union[str, PathLike, BinaryIO]

Either a Path-like object or a (writable) File-like object.

required
any_extension bool

Do not check the file extension. Defaults to False.

False
compress Union[bool, int]

Compress the file with LZMA. Either a bool or a compression preset [0, 9]. Defaults to True.

True

Other Parameters:

Name Type Description
**kwargs Any

Parameters forwarded to torch.save.

Source code in slisemap/slisemap.py
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
def save(
    self,
    f: Union[str, PathLike, BinaryIO],
    any_extension: bool = False,
    compress: Union[bool, int] = True,
    **kwargs: Any,
) -> None:
    """Save the Slisemap object to a file.

    This method uses `torch.save` (which uses `pickle` for the non-pytorch properties).
    This means that lambda-functions are not supported (unless a custom pickle module is used, see `torch.save`).

    Note that the random state is not saved, only the initial seed (if set).

    The default file extension is ".sm".

    Args:
        f: Either a Path-like object or a (writable) File-like object.
        any_extension: Do not check the file extension. Defaults to False.
        compress: Compress the file with LZMA. Either a bool or a compression preset [0, 9]. Defaults to True.

    Keyword Args:
        **kwargs: Parameters forwarded to `torch.save`.
    """
    if not any_extension and isinstance(f, (str, PathLike)):  # noqa: SIM102
        if not str(f).endswith(".sm"):
            _warn(
                "When saving Slisemap objects, consider using the '.sm' extension for consistency.",
                Slisemap.save,
            )
    loss = self._loss
    prng = self._random_state
    try:
        self.metadata.root = None
        self._B = self._B.detach()
        self._Z = self._Z.detach()
        self._loss = None
        self._random_state = None
        if isinstance(compress, int) and compress > 0:
            with lzma.open(f, "wb", preset=compress) as f2:
                torch.save(self, f2, **kwargs)
        elif compress:
            with lzma.open(f, "wb") as f2:
                torch.save(self, f2, **kwargs)
        else:
            torch.save(self, f, **kwargs)
    finally:
        self.metadata.root = self
        self._loss = loss
        self._random_state = prng

load(f, device=None, *, map_location=None, **kwargs) classmethod

Load a Slisemap object from a file.

This function uses torch.load, so the tensors are restored to their previous devices. Use device="cpu" to avoid assuming that the same device exists. This is useful if the Slisemap object has been trained on a GPU, but the current computer lacks a GPU.

Note that this is a classmethod, use it with: Slisemap.load(...).

SAFETY: This function is based on torch.load which (by default) uses pickle. Do not use Slisemap.load on untrusted files, since pickle can run arbitrary Python code.

Parameters:

Name Type Description Default
f Union[str, PathLike, BinaryIO]

Either a Path-like object or a (readable) File-like object.

required
device Union[None, str, device]

Device to load the tensors to (or the original if None). Defaults to None.

None

Other Parameters:

Name Type Description
map_location Optional[object]

The same as device (this is the name used by torch.load). Defaults to None.

**kwargs Any

Parameters forwarded to torch.load.

Returns:

Type Description
Slisemap

The loaded Slisemap object.

Source code in slisemap/slisemap.py
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
@classmethod
def load(
    cls,
    f: Union[str, PathLike, BinaryIO],
    device: Union[None, str, torch.device] = None,
    *,
    map_location: Optional[object] = None,
    **kwargs: Any,
) -> "Slisemap":
    """Load a Slisemap object from a file.

    This function uses `torch.load`, so the tensors are restored to their previous devices.
    Use `device="cpu"` to avoid assuming that the same device exists.
    This is useful if the Slisemap object has been trained on a GPU, but the current computer lacks a GPU.

    Note that this is a classmethod, use it with: `Slisemap.load(...)`.

    SAFETY: This function is based on `torch.load` which (by default) uses `pickle`.
    Do not use `Slisemap.load` on untrusted files, since `pickle` can run arbitrary Python code.

    Args:
        f: Either a Path-like object or a (readable) File-like object.
        device: Device to load the tensors to (or the original if None). Defaults to None.

    Keyword Args:
        map_location: The same as `device` (this is the name used by `torch.load`). Defaults to None.
        **kwargs: Parameters forwarded to `torch.load`.

    Returns:
        The loaded Slisemap object.
    """
    if device is None:
        device = map_location
    try:
        with lzma.open(f, "rb") as f2:
            sm = torch.load(f2, map_location=device, **kwargs)
    except lzma.LZMAError:
        sm: Slisemap = torch.load(f, map_location=device, **kwargs)
    return sm

get_model_clusters(clusters, B=None, Z=None, random_state=42, **kwargs)

Cluster the local model coefficients using k-means (from scikit-learn).

This method (with a fixed random seed) is used for plotting Slisemap solutions.

Parameters:

Name Type Description Default
clusters int

Number of clusters.

required
B Optional[ndarray]

B matrix. Defaults to self.get_B().

None
Z Optional[ndarray]

Z matrix. Defaults to self.get_Z(rotate=True).

None
random_state int

random_state for the KMeans clustering. Defaults to 42.

42

Other Parameters:

Name Type Description
**kwargs Any

Additional arguments to sklearn.cluster.KMeans or sklearn.cluster.MiniBatchKMeans if self.n >= 1024.

Returns:

Name Type Description
labels ndarray

Vector of cluster labels.

centres ndarray

Matrix of cluster centres.

Source code in slisemap/slisemap.py
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
def get_model_clusters(
    self,
    clusters: int,
    B: Optional[np.ndarray] = None,
    Z: Optional[np.ndarray] = None,
    random_state: int = 42,
    **kwargs: Any,
) -> Tuple[np.ndarray, np.ndarray]:
    """Cluster the local model coefficients using k-means (from scikit-learn).

    This method (with a fixed random seed) is used for plotting Slisemap solutions.

    Args:
        clusters: Number of clusters.
        B: B matrix. Defaults to `self.get_B()`.
        Z: Z matrix. Defaults to `self.get_Z(rotate=True)`.
        random_state: random_state for the KMeans clustering. Defaults to 42.

    Keyword Args:
        **kwargs: Additional arguments to `sklearn.cluster.KMeans` or `sklearn.cluster.MiniBatchKMeans` if `self.n >= 1024`.

    Returns:
        labels: Vector of cluster labels.
        centres: Matrix of cluster centres.
    """
    B = B if B is not None else self.get_B()
    Z = Z if Z is not None else self.get_Z(rotate=True)
    with warnings.catch_warnings():
        warnings.simplefilter("ignore", FutureWarning)
        # Some sklearn versions warn about changing defaults for KMeans
        kwargs.setdefault("random_state", random_state)
        if self.n >= 1024:
            km = MiniBatchKMeans(clusters, **kwargs).fit(B)
        else:
            km = KMeans(clusters, **kwargs).fit(B)
    ord = np.argsort([Z[km.labels_ == k, 0].mean() for k in range(clusters)])
    return np.argsort(ord)[km.labels_], km.cluster_centers_[ord]

plot(title='', clusters=None, bars=True, jitter=0.0, show=True, bar=None, *, B=None, Z=None, variables=None, targets=None, **kwargs)

Plot the Slisemap solution using seaborn.

Parameters:

Name Type Description Default
title str

Title of the plot. Defaults to "".

''
clusters Union[None, int, ndarray]

Can be None (plot individual losses), an int (plot k-means clusters of B), or an array of known cluster id:s. Defaults to None.

None
bars Union[bool, int, Sequence[str]]

Plot the local models in a bar plot. Either an int (to only plot the most influential variables), a list of variables, or a bool. Defaults to True.

True
jitter Union[float, ndarray]

Add random (normal) noise to the embedding, or a matrix with pre-generated noise matching Z. Defaults to 0.0.

0.0
show bool

Show the plot. Defaults to True.

True
bar Union[None, bool, int]

Alternative spelling for bars. Defaults to None.

None

Other Parameters:

Name Type Description
B Optional[ndarray]

Override self.get_B() in the plot. Defaults to None. DEPRECATED

Z Optional[ndarray]

Override self.get_Z() in the plot. Defaults to None. DEPRECATED

variables Optional[Sequence[str]]

List of variable names. Defaults to None. DEPRECATED

targets Union[None, str, Sequence[str]]

Target name(s). Defaults to None. DEPRECATED

**kwargs Any

Additional arguments to plot_solution and plt.subplots.

Returns:

Type Description
Optional[Figure]

matplotlib.figure.Figure if show=False.

Deprecated

1.3: Parameter variables, use metadata.set_variables() instead! 1.3: Parameter targets, use metadata.set_targets() instead! 1.3: Parameter B. 1.3: Parameter Z.

Source code in slisemap/slisemap.py
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
def plot(
    self,
    title: str = "",
    clusters: Union[None, int, np.ndarray] = None,
    bars: Union[bool, int, Sequence[str]] = True,
    jitter: Union[float, np.ndarray] = 0.0,
    show: bool = True,
    bar: Union[None, bool, int] = None,
    *,
    B: Optional[np.ndarray] = None,
    Z: Optional[np.ndarray] = None,
    variables: Optional[Sequence[str]] = None,
    targets: Union[None, str, Sequence[str]] = None,
    **kwargs: Any,
) -> Optional[Figure]:
    """Plot the Slisemap solution using seaborn.

    Args:
        title: Title of the plot. Defaults to "".
        clusters: Can be None (plot individual losses), an int (plot k-means clusters of B), or an array of known cluster id:s. Defaults to None.
        bars: Plot the local models in a bar plot. Either an int (to only plot the most influential variables), a list of variables, or a bool. Defaults to True.
        jitter: Add random (normal) noise to the embedding, or a matrix with pre-generated noise matching Z. Defaults to 0.0.
        show: Show the plot. Defaults to True.
        bar: Alternative spelling for `bars`. Defaults to None.

    Keyword Args:
        B: Override self.get_B() in the plot. Defaults to None. **DEPRECATED**
        Z: Override self.get_Z() in the plot. Defaults to None. **DEPRECATED**
        variables: List of variable names. Defaults to None. **DEPRECATED**
        targets: Target name(s). Defaults to None. **DEPRECATED**
        **kwargs: Additional arguments to [plot_solution][slisemap.plot.plot_solution] and `plt.subplots`.

    Returns:
        `matplotlib.figure.Figure` if `show=False`.

    Deprecated:
        1.3: Parameter `variables`, use `metadata.set_variables()` instead!
        1.3: Parameter `targets`, use `metadata.set_targets()` instead!
        1.3: Parameter `B`.
        1.3: Parameter `Z`.
    """
    if bar is not None:
        bars = bar
    if Z is None:
        Z = self.get_Z(rotate=True)
    else:
        _deprecated("Parameter 'Z' in Slisemap.plot")
    if B is None:
        B = self.get_B()
    else:
        _deprecated("Parameter 'B' in Slisemap.plot")
    dimensions = self.metadata.get_dimensions(long=True)
    if variables is not None:
        _deprecated(
            "Parameter 'variables' in 'Slisemap.plot'",
            "'Slisemap.metadata.set_variables'",
        )
        coefficients = _expand_variable_names(
            variables, self.intercept, self.m, targets, self.q
        )
    else:
        coefficients = self.metadata.get_coefficients()
    if targets is not None:
        _deprecated(
            "Parameter 'targets' in 'Slisemap.plot'",
            "'Slisemap.metadata.set_targets'",
        )

    loss = None
    centers = None
    if clusters is None:
        if Z.shape[0] == self._Z.shape[0]:
            loss = tonp(self.local_loss(self.predict(numpy=False), self._Y))
    else:
        if isinstance(clusters, int):
            clusters, centers = self.get_model_clusters(clusters, B, Z)
        else:
            clusters = np.asarray(clusters)
            centers = np.stack(
                [np.mean(B[clusters == c, :], 0) for c in np.unique(clusters)], 0
            )
    fig = plot_solution(
        Z=Z,
        B=B,
        loss=loss,
        clusters=clusters,
        centers=centers,
        coefficients=coefficients,
        dimensions=dimensions,
        title=title,
        bars=bars,
        jitter=jitter,
        **kwargs,
    )
    if show:
        plt.show()
    else:
        return fig

plot_position(X=None, Y=None, index=None, title='', jitter=0.0, selection=True, legend_inside=True, show=True, *, Z=None, **kwargs)

Plot local losses for alternative locations for the selected item(s).

Indicate the selected item(s) either via X and Y or via index.

Parameters:

Name Type Description Default
X Optional[ToTensor]

Data matrix for the selected data item(s). Defaults to None.

None
Y Optional[ToTensor]

Response matrix for the selected data item(s). Defaults to None.

None
index Union[None, int, Sequence[int]]

Index/indices of the selected data item(s). Defaults to None.

None
title str

Title of the plot. Defaults to "".

''
jitter Union[float, ndarray]

Add random (normal) noise to the embedding, or a matrix with pre-generated noise matching Z. Defaults to 0.0.

0.0
selection bool

Mark the selected data item(s), if index is given. Defaults to True.

True
legend_inside bool

Move the legend inside the grid (if there is an empty cell). Defaults to True.

True
show bool

Show the plot. Defaults to True.

True

Other Parameters:

Name Type Description
Z Optional[ndarray]

Override self.get_Z() in the plot. Defaults to None. DEPRECATED

**kwargs Any

Additional arguments to seaborn.relplot.

Returns:

Type Description
Optional[FacetGrid]

seaborn.FacetGrid if show=False.

Deprecated

1.3: Parameter Z.

Source code in slisemap/slisemap.py
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
def plot_position(
    self,
    X: Optional[ToTensor] = None,
    Y: Optional[ToTensor] = None,
    index: Union[None, int, Sequence[int]] = None,
    title: str = "",
    jitter: Union[float, np.ndarray] = 0.0,
    selection: bool = True,
    legend_inside: bool = True,
    show: bool = True,
    *,
    Z: Optional[np.ndarray] = None,
    **kwargs: Any,
) -> Optional[sns.FacetGrid]:
    """Plot local losses for alternative locations for the selected item(s).

    Indicate the selected item(s) either via `X` and `Y` or via `index`.

    Args:
        X: Data matrix for the selected data item(s). Defaults to None.
        Y: Response matrix for the selected data item(s). Defaults to None.
        index: Index/indices of the selected data item(s). Defaults to None.
        title: Title of the plot. Defaults to "".
        jitter: Add random (normal) noise to the embedding, or a matrix with pre-generated noise matching Z. Defaults to 0.0.
        selection: Mark the selected data item(s), if index is given. Defaults to True.
        legend_inside: Move the legend inside the grid (if there is an empty cell). Defaults to True.
        show: Show the plot. Defaults to True.

    Keyword Args:
        Z: Override `self.get_Z()` in the plot. Defaults to None. **DEPRECATED**
        **kwargs: Additional arguments to `seaborn.relplot`.

    Returns:
        `seaborn.FacetGrid` if `show=False`.

    Deprecated:
        1.3: Parameter `Z`.
    """
    if Z is not None:
        _deprecated("Parameter 'Z' in Slisemap.plot_position")
    else:
        Z = self.get_Z(rotate=True)
    if index is None:
        _assert(
            X is not None and Y is not None,
            "Either index or X and Y must be given",
            Slisemap.plot_position,
        )
        L = self.get_L(X=X, Y=Y)
    else:
        if isinstance(index, int):
            index = [index]
        L = self.get_L()[:, index]
    g = plot_position(
        Z=Z,
        L=L,
        Zs=Z[index, :] if selection and index is not None else None,
        dimensions=self.metadata.get_dimensions(long=True),
        title=title,
        jitter=jitter,
        legend_inside=legend_inside,
        **kwargs,
    )
    if show:
        plt.show()
    else:
        return g

plot_dist(title='', clusters=None, unscale=True, scatter=False, jitter=0.0, legend_inside=True, show=True, *, X=None, Y=None, B=None, variables=None, targets=None, **kwargs)

Plot the distribution of the variables, either as density plots (with clusters) or as scatterplots.

Parameters:

Name Type Description Default
title str

Title of the plot. Defaults to "".

''
clusters Union[None, int, ndarray]

Number of cluster or vector of cluster labels. Defaults to None.

None
scatter bool

Use scatterplots instead of density plots (clusters are ignored). Defaults to False.

False
unscale bool

Unscale X and Y if scaling metadata has been given (see Slisemap.metadata.set_scale_X). Defaults to True.

True
jitter float

Add jitter to the scatterplots. Defaults to 0.0.

0.0
legend_inside bool

Move the legend inside the grid (if there is an empty cell). Defaults to True.

True
show bool

Show the plot. Defaults to True.

True

Other Parameters:

Name Type Description
X Optional[ndarray]

Override self.get_X(). Defaults to None. DEPRECATED

Y Optional[ndarray]

Override self.get_Y(). Defaults to None. DEPRECATED

B Optional[ndarray]

Override self.get_B() when finding the clusters (only used if clusters is an int). Defaults to None. DEPRECATED

variables Optional[List[str]]

List of variable names. Defaults to None. DEPRECATED

targets Union[None, str, Sequence[str]]

Target name(s). Defaults to None. DEPRECATED

**kwargs Any

Additional arguments to seaborn.relplot or seaborn.scatterplot.

Returns:

Type Description
Optional[FacetGrid]

seaborn.FacetGrid if show=False.

Deprecated

1.3: Parameter variables, use metadata.set_variables() instead! 1.3: Parameter targets, use metadata.set_targets() instead! 1.3: Parameter X, use metadata.set_scale_X() instead (to automatically unscale)! 1.3: Parameter Y, use metadata.set_scale_Y() instead (to automatically unscale)! 1.3: Parameter B.

Source code in slisemap/slisemap.py
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
def plot_dist(
    self,
    title: str = "",
    clusters: Union[None, int, np.ndarray] = None,
    unscale: bool = True,
    scatter: bool = False,
    jitter: float = 0.0,
    legend_inside: bool = True,
    show: bool = True,
    *,
    X: Optional[np.ndarray] = None,
    Y: Optional[np.ndarray] = None,
    B: Optional[np.ndarray] = None,
    variables: Optional[List[str]] = None,
    targets: Union[None, str, Sequence[str]] = None,
    **kwargs: Any,
) -> Optional[sns.FacetGrid]:
    """Plot the distribution of the variables, either as density plots (with clusters) or as scatterplots.

    Args:
        title: Title of the plot. Defaults to "".
        clusters: Number of cluster or vector of cluster labels. Defaults to None.
        scatter: Use scatterplots instead of density plots (clusters are ignored). Defaults to False.
        unscale: Unscale `X` and `Y` if scaling metadata has been given (see `Slisemap.metadata.set_scale_X`). Defaults to True.
        jitter: Add jitter to the scatterplots. Defaults to 0.0.
        legend_inside: Move the legend inside the grid (if there is an empty cell). Defaults to True.
        show: Show the plot. Defaults to True.

    Keyword Args:
        X: Override self.get_X(). Defaults to None. **DEPRECATED**
        Y: Override self.get_Y(). Defaults to None. **DEPRECATED**
        B: Override self.get_B() when finding the clusters (only used if clusters is an int). Defaults to None. **DEPRECATED**
        variables: List of variable names. Defaults to None. **DEPRECATED**
        targets: Target name(s). Defaults to None. **DEPRECATED**
        **kwargs: Additional arguments to `seaborn.relplot` or `seaborn.scatterplot`.

    Returns:
        `seaborn.FacetGrid` if `show=False`.

    Deprecated:
        1.3: Parameter `variables`, use `metadata.set_variables()` instead!
        1.3: Parameter `targets`, use `metadata.set_targets()` instead!
        1.3: Parameter `X`, use `metadata.set_scale_X()` instead (to automatically unscale)!
        1.3: Parameter `Y`, use `metadata.set_scale_Y()` instead (to automatically unscale)!
        1.3: Parameter `B`.
    """
    if X is None:
        X = self.get_X(intercept=False)
    else:
        _deprecated("Parameter 'X' in Slisemap.plot_dist")
    if Y is None:
        Y = self.get_Y()
    else:
        _deprecated("Parameter 'Y' in Slisemap.plot_dist")
        Y = np.reshape(Y, (X.shape[0], -1))
    if isinstance(X, torch.Tensor):
        X = tonp(X)
    if isinstance(Y, torch.Tensor):
        Y = tonp(Y)
    if unscale:
        X = self.metadata.unscale_X(X)
        Y = self.metadata.unscale_Y(Y)
    if variables is None:
        variables = self.metadata.get_variables(intercept=False)
    else:
        _deprecated(
            "Parameter 'variables' in 'Slisemap.plot_dist'",
            "'Slisemap.metadata.set_variables'",
        )
    if targets is not None:
        _deprecated(
            "Parameter 'targets' in 'Slisemap.plot_dist'",
            "'Slisemap.metadata.set_targets'",
        )
        if isinstance(targets, str):
            targets = [targets]
    else:
        targets = self.metadata.get_targets()
    if B is not None:
        _deprecated("Parameter 'B' in Slisemap.plot_dist")
    if isinstance(clusters, int):
        clusters, _ = self.get_model_clusters(clusters, B)
    loss = tonp(self.local_loss(self.predict(numpy=False), self._Y))

    g = plot_dist(
        X=X,
        Y=Y,
        Z=self.get_Z(),
        loss=loss,
        variables=self.metadata.get_variables(False),
        targets=self.metadata.get_targets(),
        dimensions=self.metadata.get_dimensions(long=True),
        title=title,
        clusters=clusters,
        scatter=scatter,
        jitter=jitter,
        legend_inside=legend_inside,
        **kwargs,
    )
    if show:
        plt.show()
    else:
        return g

make_loss(local_model, local_loss, distance=torch.cdist, kernel=softmax_row_kernel, radius=3.5, lasso=0.0, ridge=0.0, z_norm=1.0, individual=False, regularisation=None)

Create a loss function for Slisemap to optimise.

Parameters:

Name Type Description Default
local_model Callable[[Tensor, Tensor], Tensor]

Prediction function for the local models.

required
local_loss Callable[[Tensor, Tensor], Tensor]

Loss function for the local models.

required
distance Callable[[Tensor, Tensor], Tensor]

Embedding distance function. Defaults to torch.cdist (Euclidean distance).

cdist
kernel Callable[[Tensor], Tensor]

Kernel for embedding distances, Defaults to softmax_kernel.

softmax_row_kernel
radius float

For enforcing the radius of Z. Defaults to 3.5.

3.5
lasso float

Lasso-regularisation coefficient for B ($\lambda_{lasso} * ||B||_1$). Defaults to 0.0.

0.0
ridge float

Ridge-regularisation coefficient for B ($\lambda_{ridge} * ||B||_2$). Defaults to 0.0.

0.0
z_norm float

Z normalisation regularisation coefficient ($\lambda_{norm} * (sum(Z^2)-n)^2$). Defaults to 1.0.

1.0
individual bool

Return individual (row-wise) losses. Defaults to False.

False
regularisation Optional[Callable]

Additional loss function. Defaults to None.

None

Returns:

Type Description
Callable[[Tensor, Tensor, Tensor, Tensor], Tensor]

Loss function for SLISEMAP

Source code in slisemap/slisemap.py
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
def make_loss(
    local_model: Callable[[torch.Tensor, torch.Tensor], torch.Tensor],
    local_loss: Callable[[torch.Tensor, torch.Tensor], torch.Tensor],
    distance: Callable[[torch.Tensor, torch.Tensor], torch.Tensor] = torch.cdist,
    kernel: Callable[[torch.Tensor], torch.Tensor] = softmax_row_kernel,
    radius: float = 3.5,
    lasso: float = 0.0,
    ridge: float = 0.0,
    z_norm: float = 1.0,
    individual: bool = False,
    regularisation: Optional[Callable] = None,
) -> Callable[[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor], torch.Tensor]:
    r"""Create a loss function for Slisemap to optimise.

    Args:
        local_model: Prediction function for the local models.
        local_loss: Loss function for the local models.
        distance: Embedding distance function. Defaults to `torch.cdist` (Euclidean distance).
        kernel: Kernel for embedding distances, Defaults to `softmax_kernel`.
        radius: For enforcing the radius of Z. Defaults to 3.5.
        lasso: Lasso-regularisation coefficient for B ($\lambda_{lasso} * ||B||_1$). Defaults to 0.0.
        ridge: Ridge-regularisation coefficient for B ($\lambda_{ridge} * ||B||_2$). Defaults to 0.0.
        z_norm: Z normalisation regularisation coefficient ($\\lambda_{norm} * (sum(Z^2)-n)^2$). Defaults to 1.0.
        individual: Return individual (row-wise) losses. Defaults to False.
        regularisation: Additional loss function. Defaults to None.

    Returns:
        Loss function for SLISEMAP
    """
    dim = 1 if individual else ()
    if individual and z_norm > 0:
        _warn(
            "The Z normalisation is added to every individual loss if z_norm > 0",
            make_loss,
        )

    def loss_fn(
        X: torch.Tensor,
        Y: torch.Tensor,
        B: torch.Tensor,
        Z: torch.Tensor,
    ) -> torch.Tensor:
        """Slisemap loss function.

        Args:
            X: Data matrix [n, m].
            Y: Target matrix [n, k].
            B: Local models [n, p].
            Z: Embedding matrix [n, d].

        Returns:
            The loss value.
        """
        if radius > 0:
            Zss = torch.sum(Z**2)
            Z = Z * (radius / (torch.sqrt(Zss / Z.shape[0]) + 1e-8))
        D = distance(Z, Z)
        Ytilde = local_model(X, B)
        L = local_loss(Ytilde, Y)
        loss = torch.sum(kernel(D) * L, dim=dim)
        if lasso > 0:
            loss += lasso * torch.sum(B.abs(), dim=dim)
        if ridge > 0:
            loss += ridge * torch.sum(B**2, dim=dim)
        if z_norm > 0 and radius > 0:
            loss += z_norm * (Zss - Z.shape[0]) ** 2
        if regularisation is not None:
            loss += regularisation(X, Y, B, Z, Ytilde)
        return loss

    return loss_fn

make_marginal_loss(X, Y, B, Z, Xnew, Ynew, local_model, local_loss, distance=torch.cdist, kernel=softmax_row_kernel, radius=3.5, lasso=0.0, ridge=0.0, jit=True)

Create a loss for adding new points with Slisemap.

Parameters:

Name Type Description Default
X Tensor

The existing data matrix [n_old, m].

required
Y Tensor

The existing target matrix [n_old, k].

required
B Tensor

The fitted models [n_old, p].

required
Z Tensor

The fitted embedding [n_old, d].

required
Xnew Tensor

The new data matrix [n_new, m].

required
Ynew Tensor

The new target matrix [n_new, k].

required
local_model Callable[[Tensor, Tensor], Tensor]

Prediction function for the local models.

required
local_loss Callable[[Tensor, Tensor], Tensor]

Loss function for the local models.

required
distance Callable[[Tensor, Tensor], Tensor]

Embedding distance function. Defaults to torch.cdist (Euclidean distance).

cdist
kernel Callable[[Tensor], Tensor]

Kernel for embedding distances, Defaults to softmax_kernel.

softmax_row_kernel
radius float

For enforcing the radius of Z. Defaults to 3.5.

3.5
lasso float

Lasso-regularisation coefficient for B ($\lambda_{lasso} * ||B||_1$). Defaults to 0.0.

0.0
ridge float

Ridge-regularisation coefficient for B ($\lambda_{ridge} * ||B||_2$). Defaults to 0.0.

0.0
jit bool

Just-In-Time compile the loss function. Defaults to True.

True

Returns:

Name Type Description
loss Callable[[Tensor, Tensor], Tensor]

A marginal loss function that takes Bnew [n_new, p] and Znew [n_new, d].

set_new Callable[[Tensor, Tensor], None]

A function for changing the Xnew [n_new, m] and Ynew [n_new, k].

Source code in slisemap/slisemap.py
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
def make_marginal_loss(
    X: torch.Tensor,
    Y: torch.Tensor,
    B: torch.Tensor,
    Z: torch.Tensor,
    Xnew: torch.Tensor,
    Ynew: torch.Tensor,
    local_model: Callable[[torch.Tensor, torch.Tensor], torch.Tensor],
    local_loss: Callable[[torch.Tensor, torch.Tensor], torch.Tensor],
    distance: Callable[[torch.Tensor, torch.Tensor], torch.Tensor] = torch.cdist,
    kernel: Callable[[torch.Tensor], torch.Tensor] = softmax_row_kernel,
    radius: float = 3.5,
    lasso: float = 0.0,
    ridge: float = 0.0,
    jit: bool = True,
) -> Tuple[
    Callable[[torch.Tensor, torch.Tensor], torch.Tensor],
    Callable[[torch.Tensor, torch.Tensor], None],
]:
    r"""Create a loss for adding new points with Slisemap.

    Args:
        X: The existing data matrix [n_old, m].
        Y: The existing target matrix [n_old, k].
        B: The fitted models [n_old, p].
        Z: The fitted embedding [n_old, d].
        Xnew: The new data matrix [n_new, m].
        Ynew: The new target matrix [n_new, k].
        local_model: Prediction function for the local models.
        local_loss: Loss function for the local models.
        distance: Embedding distance function. Defaults to `torch.cdist` (Euclidean distance).
        kernel: Kernel for embedding distances, Defaults to `softmax_kernel`.
        radius: For enforcing the radius of Z. Defaults to 3.5.
        lasso: Lasso-regularisation coefficient for B ($\lambda_{lasso} * ||B||_1$). Defaults to 0.0.
        ridge: Ridge-regularisation coefficient for B ($\lambda_{ridge} * ||B||_2$). Defaults to 0.0.
        jit: Just-In-Time compile the loss function. Defaults to True.

    Returns:
        loss: A marginal loss function that takes Bnew [n_new, p] and Znew [n_new, d].
        set_new: A function for changing the Xnew [n_new, m] and Ynew [n_new, k].
    """
    Xcomb = torch.cat((X, Xnew), 0)
    Ycomb = torch.cat((Y, Ynew), 0)
    Nold = X.shape[0]
    L0 = local_loss(local_model(Xcomb, B), Ycomb)  # Nold x Ncomb
    D0 = distance(Z, Z)  # Nold x Nold

    def set_new(Xnew: torch.Tensor, Ynew: torch.Tensor) -> None:
        """Set the Xnew and Ynew for the generated marginal Slisemap loss function.

        Args:
            Xnew: New data matrix [n_new, m].
            Ynew: New target matrix [n_new, k].
        """
        nonlocal Xcomb, Ycomb, L0
        Xcomb[Nold:] = Xnew
        Ycomb[Nold:] = Ynew
        L0[:, Nold:] = local_loss(local_model(Xnew, B), Ynew)

    if radius > 0:
        Zss0 = torch.sum(Z**2)

    def loss(Bnew: torch.Tensor, Znew: torch.Tensor) -> torch.Tensor:
        """Marginal Slisemap loss.

        Args:
            Bnew: New local models [n_new, p].
            Znew: New embedding matrix [n_new, d].

        Returns:
            The marginal loss value.
        """
        L1 = local_loss(local_model(Xcomb, Bnew), Ycomb)  # Nnew x Ncomb
        L = torch.cat((L0, L1), 0)  # Ncomb x Ncomb

        D1 = distance(Znew, Z)  # Nnew x Nold
        D2 = distance(Znew, Znew)  # Nnew x Nnew
        D3 = D1.transpose(0, 1)
        D = torch.cat(
            (torch.cat((D0, D1), 0), torch.cat((D3, D2), 0)), 1
        )  # Ncomb x Ncomb
        if radius > 0:
            Zss = Zss0 + torch.sum(Znew**2)
            Ncomb = Z.shape[0] + Znew.shape[0]
            norm = radius / (torch.sqrt(Zss / Ncomb) + 1e-8)
            D = D * norm

        kD = kernel(D)
        a = torch.sum(kD * L)
        if lasso > 0:
            a += lasso * torch.sum(Bnew.abs())
        if ridge > 0:
            a += ridge * torch.sum(Bnew**2)
        return a

    if jit:
        Nnew = Xnew.shape[0]
        loss = torch.jit.trace(loss, (B[:1].expand(Nnew, -1), Z[:1].expand(Nnew, -1)))
    return loss, set_new