slisemap.slisemap
Module that contains the Slisemap
class.
Slisemap
Slisemap: Combine local explanations with dimensionality reduction.
This class contains the data and the parameters needed for finding a Slisemap solution. It also contains the solution (remember to optimise() first) in the form of an embedding matrix, see get_Z(), and a matrix of coefficients for the local model, see get_B(). Other methods of note are the various plotting methods, the save() method, and the fit_new() method.
The use of some regularisation is highly recommended. Slisemap comes with built-in lasso/L1 and ridge/L2 regularisation (if these are used it is also a good idea to normalise the data in advance).
Attributes:
Name | Type | Description |
---|---|---|
n |
int
|
The number of data items ( |
m |
int
|
The number of variables ( |
o |
int
|
The number of targets ( |
d |
int
|
The number of embedding dimensions ( |
q |
int
|
The number of coefficients ( |
intercept |
bool
|
Has an intercept term been added to |
radius |
float
|
The radius of the embedding. |
lasso |
float
|
Lasso regularisation coefficient. |
ridge |
float
|
Ridge regularisation coefficient. |
z_norm |
float
|
Z normalisation regularisation coefficient. |
local_model |
CallableLike[predict]
|
Local model prediction function (see slisemap.local_models). |
local_loss |
CallableLike[loss]
|
Local model loss function (see slisemap.local_models). |
regularisation |
CallableLike[regularisation]
|
Additional regularisation function. |
distance |
Callable[[Tensor, Tensor], Tensor]
|
Distance function. |
kernel |
Callable[[Tensor], Tensor]
|
Kernel function. |
jit |
bool
|
Just-In-Time compile the loss function for increased performance (see |
metadata |
Metadata
|
A dictionary for storing variable names and other metadata (see slisemap.utils.Metadata). |
Source code in slisemap/slisemap.py
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 |
|
__init__(X, y, radius=3.5, d=2, lasso=None, ridge=None, z_norm=0.01, intercept=True, local_model=LinearRegression, local_loss=None, coefficients=None, regularisation=None, distance=torch.cdist, kernel=softmax_row_kernel, B0=None, Z0=None, jit=True, random_state=None, dtype=torch.float32, device=None, cuda=None)
Create a Slisemap object.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
X |
ToTensor
|
Data matrix. |
required |
y |
ToTensor
|
Target vector or matrix. |
required |
radius |
float
|
The radius of the embedding Z. Defaults to 3.5. |
3.5
|
d |
int
|
The number of embedding dimensions. Defaults to 2. |
2
|
lasso |
Optional[float]
|
Lasso regularisation coefficient. Defaults to 0.0. |
None
|
ridge |
Optional[float]
|
Ridge regularisation coefficient. Defaults to 0.0. |
None
|
z_norm |
float
|
Z normalisation regularisation coefficient. Defaults to 0.01. |
0.01
|
intercept |
bool
|
Should an intercept term be added to |
True
|
local_model |
Union[LocalModelCollection, CallableLike[predict]]
|
Local model prediction function (see slisemap.local_models.identify_local_model). Defaults to LinearRegression. |
LinearRegression
|
local_loss |
Optional[CallableLike[loss]]
|
Local model loss function (see slisemap.local_models.identify_local_model). Defaults to None. |
None
|
coefficients |
Union[None, int, CallableLike[coefficients]]
|
The number of local model coefficients (see slisemap.local_models.identify_local_model). Defaults to None. |
None
|
regularisation |
Union[None, CallableLike[regularisation]]
|
Additional regularisation method (see slisemap.local_models.identify_local_model). Defaults to None. |
None
|
distance |
Callable[[Tensor, Tensor], Tensor]
|
Distance function. Defaults to |
cdist
|
kernel |
Callable[[Tensor], Tensor]
|
Kernel function. Defaults to softmax_row_kernel. |
softmax_row_kernel
|
B0 |
Optional[ToTensor]
|
Initial value for B (random if None). Defaults to None. |
None
|
Z0 |
Optional[ToTensor]
|
Initial value for Z (PCA if None). Defaults to None. |
None
|
jit |
bool
|
Just-In-Time compile the loss function for increased performance (see |
True
|
random_state |
Optional[int]
|
Set an explicit seed for the random number generator (i.e. |
None
|
dtype |
dtype
|
Floating type. Defaults to |
float32
|
device |
Optional[device]
|
Torch device. Defaults to None. |
None
|
cuda |
Optional[bool]
|
Use cuda if available. Defaults to True, if the data is large enough. |
None
|
Deprecated
1.6: Use device
instead of cuda
to force a specific device.
1.6: The random_state
has been moved to the escape function.
Source code in slisemap/slisemap.py
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 |
|
n: int
property
The number of data items.
m: int
property
The number of variables (including potential intercept).
o: int
property
The number of target variables (i.e. the number of classes).
d: int
property
writable
The number of embedding dimensions.
q: int
property
The number of local model coefficients.
intercept: bool
property
Is an intercept column added to the data?.
radius: float
property
writable
The radius of the embedding.
lasso: float
property
writable
Lasso regularisation strength.
ridge: float
property
writable
Ridge regularisation strength.
z_norm: float
property
writable
Z normalisation regularisation strength.
local_model: CallableLike[ALocalModel.predict]
property
writable
Local model prediction function. Takes in X[n, m] and B[n, q], and returns Ytilde[n, n, o].
local_loss: CallableLike[ALocalModel.loss]
property
writable
Local model loss function. Takes in Ytilde[n, n, o] and Y[n, o] and returns L[n, n].
regularisation: CallableLike[ALocalModel.regularisation]
property
writable
Regularisation function. Takes in X, Y, Bp, Z, and Ytilde and returns an additional loss scalar.
distance: Callable[[torch.Tensor, torch.Tensor], torch.Tensor]
property
writable
Distance function. Takes in Z[n1, d] and Z[n2, d], and returns D[n1, n2].
kernel: Callable[[torch.Tensor], torch.Tensor]
property
writable
Kernel function. Takes in D[n, n] and returns W[n, n].
jit: bool
property
writable
Just-In-Time compile the loss function?.
random_state: None = property(fset=random_state, doc=random_state.__doc__)
class-attribute
instance-attribute
Set the seed for the random number generator specific for this object (None reverts to the global torch
PRNG).
Deprecated
1.6: Use Slisemap.escape(random_state=...)
instead.
tensorargs: Dict[str, Any]
property
When creating a new torch.Tensor
add these keyword arguments to match the dtype
and device
of this Slisemap object.
cuda(**kwargs)
Move the tensors to CUDA memory (and run the calculations there).
Note that this resets the random state.
Other Parameters:
Name | Type | Description |
---|---|---|
**kwargs |
Any
|
Optional arguments to |
Source code in slisemap/slisemap.py
477 478 479 480 481 482 483 484 485 486 487 488 489 490 |
|
cpu(**kwargs)
Move the tensors to CPU memory (and run the calculations there).
Note that this resets the random state.
Other Parameters:
Name | Type | Description |
---|---|---|
**kwargs |
Any
|
Optional arguments to |
Source code in slisemap/slisemap.py
492 493 494 495 496 497 498 499 500 501 502 503 504 505 |
|
get_Z(scale=True, rotate=False, numpy=True)
Get the Z matrix.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
scale |
bool
|
Scale the returned |
True
|
rotate |
bool
|
Rotate the returned |
False
|
numpy |
bool
|
Return the matrix as a numpy (True) or pytorch (False) matrix. Defaults to True. |
True
|
Returns:
Type | Description |
---|---|
Union[ndarray, Tensor]
|
The |
Source code in slisemap/slisemap.py
572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 |
|
get_B(numpy=True)
Get the B matrix.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
numpy |
bool
|
Return the matrix as a numpy (True) or pytorch (False) matrix. Defaults to True. |
True
|
Returns:
Type | Description |
---|---|
Union[ndarray, Tensor]
|
The |
Source code in slisemap/slisemap.py
591 592 593 594 595 596 597 598 599 600 |
|
get_D(numpy=True)
Get the embedding distance matrix.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
numpy |
bool
|
Return the matrix as a numpy (True) or pytorch (False) matrix. Defaults to True. |
True
|
Returns:
Type | Description |
---|---|
Union[ndarray, Tensor]
|
The |
Source code in slisemap/slisemap.py
602 603 604 605 606 607 608 609 610 611 612 613 |
|
get_L(X=None, Y=None, numpy=True)
Get the loss matrix: [B.shape[0], X.shape[0]].
Parameters:
Name | Type | Description | Default |
---|---|---|---|
X |
Optional[ToTensor]
|
Optional replacement for the training X. Defaults to None. |
None
|
Y |
Optional[ToTensor]
|
Optional replacement for the training Y. Defaults to None. |
None
|
numpy |
bool
|
Return the matrix as a numpy (True) or pytorch (False) matrix. Defaults to True. |
True
|
Returns:
Type | Description |
---|---|
Union[ndarray, Tensor]
|
The |
Source code in slisemap/slisemap.py
615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 |
|
get_W(numpy=True)
Get the weight matrix.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
numpy |
bool
|
Return the matrix as a numpy.ndarray instead of a torch.Tensor. Defaults to True. |
True
|
Returns:
Type | Description |
---|---|
Union[ndarray, Tensor]
|
The |
Source code in slisemap/slisemap.py
636 637 638 639 640 641 642 643 644 645 646 |
|
get_X(numpy=True, intercept=True)
Get the data matrix.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
numpy |
bool
|
Return the matrix as a numpy.ndarray instead of a torch.Tensor. Defaults to True. |
True
|
intercept |
bool
|
Include the intercept column (if |
True
|
Returns:
Type | Description |
---|---|
Union[ndarray, Tensor]
|
The |
Source code in slisemap/slisemap.py
648 649 650 651 652 653 654 655 656 657 658 659 660 661 |
|
get_Y(numpy=True, ravel=False)
Get the target matrix.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
numpy |
bool
|
Return the matrix as a numpy.ndarray instead of a torch.Tensor. Defaults to True. |
True
|
ravel |
bool
|
Remove the second dimension if it is singular (i.e. turn it into a vector). Defaults to False. |
False
|
Returns:
Type | Description |
---|---|
Union[ndarray, Tensor]
|
The |
Source code in slisemap/slisemap.py
663 664 665 666 667 668 669 670 671 672 673 674 675 676 |
|
value(individual=False, numpy=True)
Calculate the loss value.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
individual |
bool
|
Give loss individual loss values for the data points. Defaults to False. |
False
|
numpy |
bool
|
Return the loss as a numpy.ndarray or float instead of a torch.Tensor. Defaults to True. |
True
|
Returns:
Type | Description |
---|---|
Union[float, ndarray, Tensor]
|
The loss value(s). |
Source code in slisemap/slisemap.py
678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 |
|
entropy(aggregate=True, numpy=True)
Compute row-wise entropy of the W
matrix induced by Z
. DEPRECATED.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
aggregate |
bool
|
Aggregate the row-wise entropies into one scalar. Defaults to True. |
True
|
numpy |
bool
|
Return a |
True
|
Returns:
Type | Description |
---|---|
Union[float, ndarray, Tensor]
|
The entropy. |
Deprecated
1.4: Use slisemap.metrics.entropy instead.
Source code in slisemap/slisemap.py
697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 |
|
lbfgs(max_iter=500, verbose=False, *, only_B=False, **kwargs)
Optimise Slisemap using LBFGS.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
max_iter |
int
|
Maximum number of LBFGS iterations. Defaults to 500. |
500
|
verbose |
bool
|
Print status messages. Defaults to False. |
False
|
Other Parameters:
Name | Type | Description |
---|---|---|
only_B |
bool
|
Only optimise B. Defaults to False. |
**kwargs |
Any
|
Optional keyword arguments to LBFGS. |
Returns:
Type | Description |
---|---|
float
|
The loss value. |
Source code in slisemap/slisemap.py
717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 |
|
escape(force_move=True, escape_fn=escape_neighbourhood, lerp=0.95, noise=0.0, random_state=42)
Try to escape a local optimum by moving the items (embedding and local model) to the neighbourhoods best suited for them.
This is done by finding another item (in the optimal neighbourhood) and copying its values for Z and B.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
force_move |
bool
|
Do not allow the items to pair with themselves. Defaults to True. |
True
|
escape_fn |
Callable
|
Escape function (see slisemap.escape). Defaults to escape_neighbourhood. |
escape_neighbourhood
|
lerp |
float
|
Linear interpolation between the old (0.0) and the new (1.0) embedding position. Defaults to 0.95. |
0.95
|
noise |
float
|
Scale of the noise added to the embedding matrix if it looses rank after an escape (recommended for gradient based optimisers). Defaults to 1e-4. |
0.0
|
random_state |
int
|
Seed for the random generator if |
42
|
Source code in slisemap/slisemap.py
780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 |
|
optimise(patience=2, max_escapes=100, max_iter=500, verbose=0, only_B=False, escape_kws={}, *, escape_fn=None, noise=None, **kwargs)
Optimise Slisemap by alternating between self.lbfgs() and self.escape() until convergence.
Statistics for the optimisation can be found in self.metadata["optimize_time"]
and self.metadata["optimize_loss"]
.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
patience |
int
|
Number of escapes without improvement before stopping. Defaults to 2. |
2
|
max_escapes |
int
|
Maximum numbers optimisation rounds. Defaults to 100. |
100
|
max_iter |
int
|
Maximum number of LBFGS iterations per round. Defaults to 500. |
500
|
verbose |
Literal[0, 1, 2]
|
Print status messages (0: no, 1: some, 2: all). Defaults to 0. |
0
|
only_B |
bool
|
Only optimise the local models, not the embedding. Defaults to False. |
False
|
escape_kws |
Dict[str, object]
|
Optional keyword arguments to self.escape(). Defaults to {}. |
{}
|
Other Parameters:
Name | Type | Description |
---|---|---|
escape_fn |
Optional[CallableLike[escape_neighbourhood]]
|
Escape function (see slisemap.escape). Defaults to escape_neighbourhood. |
noise |
Optional[float]
|
Scale of the noise added to the embedding matrix if it looses rank after an escape. |
**kwargs |
Any
|
Optional keyword arguments to Slisemap.lbfgs. |
Returns:
Type | Description |
---|---|
float
|
The loss value. |
Deprecated
1.6: The noise
argument, use escape_kws={"noise": noise}
instead.
1.6: The escape_fn
argument, use escape_kws={"escape_fn": escape_fn}
instead.
Source code in slisemap/slisemap.py
834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 |
|
fit_new(Xnew, ynew, optimise=True, between=True, escape_fn=escape_neighbourhood, loss=False, verbose=False, numpy=True, **kwargs)
Generate embedding(s) and model(s) for new data item(s).
This works as follows
- Find good initial embedding(s) and local model(s) using the escape_fn.
- Optionally finetune the embedding(s) and model(s) using LBFG.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
Xnew |
ToTensor
|
New data point(s). |
required |
ynew |
ToTensor
|
New target(s). |
required |
optimise |
bool
|
Should the embedding and model be optimised (after finding the neighbourhood). Defaults to True. |
True
|
between |
bool
|
If |
True
|
escape_fn |
Callable
|
Escape function (see slisemap.escape). Defaults to escape_neighbourhood. |
escape_neighbourhood
|
loss |
bool
|
Return a vector of individual losses for the new items. Defaults to False. |
False
|
verbose |
bool
|
Print status messages. Defaults to False. |
False
|
numpy |
bool
|
Return the results as numpy (True) or pytorch (False) matrices. Defaults to True. |
True
|
Other Parameters:
Name | Type | Description |
---|---|---|
**kwargs |
Any
|
Optional keyword arguments to LBFGS. |
Returns:
Name | Type | Description |
---|---|---|
Bnew |
Union[Tuple[ndarray, ndarray, Optional[ndarray]], Tuple[Tensor, Tensor, Optional[Tensor]]]
|
Local model coefficients for the new data. |
Znew |
Union[Tuple[ndarray, ndarray, Optional[ndarray]], Tuple[Tensor, Tensor, Optional[Tensor]]]
|
Embedding(s) for the new data. |
loss |
Union[Tuple[ndarray, ndarray, Optional[ndarray]], Tuple[Tensor, Tensor, Optional[Tensor]]]
|
Individual losses if |
Source code in slisemap/slisemap.py
934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 |
|
predict(X=None, B=None, Z=None, numpy=True, *, Xnew=None, Znew=None, **kwargs)
Predict new outcomes when the data and embedding or local model is known.
If the local models B
are known they are used.
If the embeddings Z
are known they are used to find new local models.
Ohterwise the closest training X gives the B
.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
X |
Optional[ToTensor]
|
Data matrix (set to None to use the training data). Defaults to None. |
None
|
B |
Optional[ToTensor]
|
Coefficient matrix. Defaults to None. |
None
|
Z |
Optional[ToTensor]
|
Embedding matrix. Defaults to None. |
None
|
numpy |
bool
|
Return the result as a numpy (True) or a pytorch (False) matrix. Defaults to True. |
True
|
Other Parameters:
Name | Type | Description |
---|---|---|
**kwargs |
Any
|
Optional keyword arguments to LBFGS. |
Returns:
Type | Description |
---|---|
ndarray
|
Prediction matrix. |
Deprecated
1.4: Renamed Xnew, Znew to X, Z.
Source code in slisemap/slisemap.py
1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 |
|
copy()
Make a copy of this Slisemap that references as much of the same torch-data as possible.
Returns:
Type | Description |
---|---|
Slisemap
|
An almost shallow copy of this Slisemap object. |
Source code in slisemap/slisemap.py
1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 |
|
restore()
Reset B and Z to their initial values B0 and Z0.
Deprecated
1.6: Use Slisemap.copy
before any optimisation instead.
Source code in slisemap/slisemap.py
1152 1153 1154 1155 1156 1157 1158 1159 1160 |
|
save(f, any_extension=False, compress=True, **kwargs)
Save the Slisemap object to a file.
This method uses torch.save
(which uses pickle
for the non-pytorch properties).
This means that lambda-functions are not supported (unless a custom pickle module is used, see torch.save
).
Note that the random state is not saved, only the initial seed (if set).
The default file extension is ".sm".
Parameters:
Name | Type | Description | Default |
---|---|---|---|
f |
Union[str, PathLike, BinaryIO]
|
Either a Path-like object or a (writable) File-like object. |
required |
any_extension |
bool
|
Do not check the file extension. Defaults to False. |
False
|
compress |
Union[bool, int]
|
Compress the file with LZMA. Either a bool or a compression preset [0, 9]. Defaults to True. |
True
|
Other Parameters:
Name | Type | Description |
---|---|---|
**kwargs |
Any
|
Parameters forwarded to |
Source code in slisemap/slisemap.py
1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 |
|
load(f, device=None, *, map_location=None, **kwargs)
classmethod
Load a Slisemap object from a file.
This function uses torch.load
, so the tensors are restored to their previous devices.
Use device="cpu"
to avoid assuming that the same device exists.
This is useful if the Slisemap object has been trained on a GPU, but the current computer lacks a GPU.
Note that this is a classmethod, use it with: Slisemap.load(...)
.
SAFETY: This function is based on torch.load
which (by default) uses pickle
.
Do not use Slisemap.load
on untrusted files, since pickle
can run arbitrary Python code.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
f |
Union[str, PathLike, BinaryIO]
|
Either a Path-like object or a (readable) File-like object. |
required |
device |
Union[None, str, device]
|
Device to load the tensors to (or the original if None). Defaults to None. |
None
|
Other Parameters:
Name | Type | Description |
---|---|---|
map_location |
Optional[object]
|
The same as |
**kwargs |
Any
|
Parameters forwarded to |
Returns:
Type | Description |
---|---|
Slisemap
|
The loaded Slisemap object. |
Source code in slisemap/slisemap.py
1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 |
|
get_model_clusters(clusters, B=None, Z=None, random_state=42, **kwargs)
Cluster the local model coefficients using k-means (from scikit-learn).
This method (with a fixed random seed) is used for plotting Slisemap solutions.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
clusters |
int
|
Number of clusters. |
required |
B |
Optional[ndarray]
|
B matrix. Defaults to |
None
|
Z |
Optional[ndarray]
|
Z matrix. Defaults to |
None
|
random_state |
int
|
random_state for the KMeans clustering. Defaults to 42. |
42
|
Other Parameters:
Name | Type | Description |
---|---|---|
**kwargs |
Any
|
Additional arguments to |
Returns:
Name | Type | Description |
---|---|---|
labels |
ndarray
|
Vector of cluster labels. |
centres |
ndarray
|
Matrix of cluster centres. |
Source code in slisemap/slisemap.py
1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 |
|
plot(title='', clusters=None, bars=True, jitter=0.0, show=True, bar=None, *, B=None, Z=None, variables=None, targets=None, **kwargs)
Plot the Slisemap solution using seaborn.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
title |
str
|
Title of the plot. Defaults to "". |
''
|
clusters |
Union[None, int, ndarray]
|
Can be None (plot individual losses), an int (plot k-means clusters of B), or an array of known cluster id:s. Defaults to None. |
None
|
bars |
Union[bool, int, Sequence[str]]
|
Plot the local models in a bar plot. Either an int (to only plot the most influential variables), a list of variables, or a bool. Defaults to True. |
True
|
jitter |
Union[float, ndarray]
|
Add random (normal) noise to the embedding, or a matrix with pre-generated noise matching Z. Defaults to 0.0. |
0.0
|
show |
bool
|
Show the plot. Defaults to True. |
True
|
bar |
Union[None, bool, int]
|
Alternative spelling for |
None
|
Other Parameters:
Name | Type | Description |
---|---|---|
B |
Optional[ndarray]
|
Override self.get_B() in the plot. Defaults to None. DEPRECATED |
Z |
Optional[ndarray]
|
Override self.get_Z() in the plot. Defaults to None. DEPRECATED |
variables |
Optional[Sequence[str]]
|
List of variable names. Defaults to None. DEPRECATED |
targets |
Union[None, str, Sequence[str]]
|
Target name(s). Defaults to None. DEPRECATED |
**kwargs |
Any
|
Additional arguments to plot_solution and |
Returns:
Type | Description |
---|---|
Optional[Figure]
|
|
Deprecated
1.3: Parameter variables
, use metadata.set_variables()
instead!
1.3: Parameter targets
, use metadata.set_targets()
instead!
1.3: Parameter B
.
1.3: Parameter Z
.
Source code in slisemap/slisemap.py
1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 |
|
plot_position(X=None, Y=None, index=None, title='', jitter=0.0, selection=True, legend_inside=True, show=True, *, Z=None, **kwargs)
Plot local losses for alternative locations for the selected item(s).
Indicate the selected item(s) either via X
and Y
or via index
.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
X |
Optional[ToTensor]
|
Data matrix for the selected data item(s). Defaults to None. |
None
|
Y |
Optional[ToTensor]
|
Response matrix for the selected data item(s). Defaults to None. |
None
|
index |
Union[None, int, Sequence[int]]
|
Index/indices of the selected data item(s). Defaults to None. |
None
|
title |
str
|
Title of the plot. Defaults to "". |
''
|
jitter |
Union[float, ndarray]
|
Add random (normal) noise to the embedding, or a matrix with pre-generated noise matching Z. Defaults to 0.0. |
0.0
|
selection |
bool
|
Mark the selected data item(s), if index is given. Defaults to True. |
True
|
legend_inside |
bool
|
Move the legend inside the grid (if there is an empty cell). Defaults to True. |
True
|
show |
bool
|
Show the plot. Defaults to True. |
True
|
Other Parameters:
Name | Type | Description |
---|---|---|
Z |
Optional[ndarray]
|
Override |
**kwargs |
Any
|
Additional arguments to |
Returns:
Type | Description |
---|---|
Optional[FacetGrid]
|
|
Deprecated
1.3: Parameter Z
.
Source code in slisemap/slisemap.py
1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 |
|
plot_dist(title='', clusters=None, unscale=True, scatter=False, jitter=0.0, legend_inside=True, show=True, *, X=None, Y=None, B=None, variables=None, targets=None, **kwargs)
Plot the distribution of the variables, either as density plots (with clusters) or as scatterplots.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
title |
str
|
Title of the plot. Defaults to "". |
''
|
clusters |
Union[None, int, ndarray]
|
Number of cluster or vector of cluster labels. Defaults to None. |
None
|
scatter |
bool
|
Use scatterplots instead of density plots (clusters are ignored). Defaults to False. |
False
|
unscale |
bool
|
Unscale |
True
|
jitter |
float
|
Add jitter to the scatterplots. Defaults to 0.0. |
0.0
|
legend_inside |
bool
|
Move the legend inside the grid (if there is an empty cell). Defaults to True. |
True
|
show |
bool
|
Show the plot. Defaults to True. |
True
|
Other Parameters:
Name | Type | Description |
---|---|---|
X |
Optional[ndarray]
|
Override self.get_X(). Defaults to None. DEPRECATED |
Y |
Optional[ndarray]
|
Override self.get_Y(). Defaults to None. DEPRECATED |
B |
Optional[ndarray]
|
Override self.get_B() when finding the clusters (only used if clusters is an int). Defaults to None. DEPRECATED |
variables |
Optional[List[str]]
|
List of variable names. Defaults to None. DEPRECATED |
targets |
Union[None, str, Sequence[str]]
|
Target name(s). Defaults to None. DEPRECATED |
**kwargs |
Any
|
Additional arguments to |
Returns:
Type | Description |
---|---|
Optional[FacetGrid]
|
|
Deprecated
1.3: Parameter variables
, use metadata.set_variables()
instead!
1.3: Parameter targets
, use metadata.set_targets()
instead!
1.3: Parameter X
, use metadata.set_scale_X()
instead (to automatically unscale)!
1.3: Parameter Y
, use metadata.set_scale_Y()
instead (to automatically unscale)!
1.3: Parameter B
.
Source code in slisemap/slisemap.py
1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 |
|
make_loss(local_model, local_loss, distance=torch.cdist, kernel=softmax_row_kernel, radius=3.5, lasso=0.0, ridge=0.0, z_norm=1.0, individual=False, regularisation=None)
Create a loss function for Slisemap to optimise.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
local_model |
Callable[[Tensor, Tensor], Tensor]
|
Prediction function for the local models. |
required |
local_loss |
Callable[[Tensor, Tensor], Tensor]
|
Loss function for the local models. |
required |
distance |
Callable[[Tensor, Tensor], Tensor]
|
Embedding distance function. Defaults to |
cdist
|
kernel |
Callable[[Tensor], Tensor]
|
Kernel for embedding distances, Defaults to |
softmax_row_kernel
|
radius |
float
|
For enforcing the radius of Z. Defaults to 3.5. |
3.5
|
lasso |
float
|
Lasso-regularisation coefficient for B ($\lambda_{lasso} * ||B||_1$). Defaults to 0.0. |
0.0
|
ridge |
float
|
Ridge-regularisation coefficient for B ($\lambda_{ridge} * ||B||_2$). Defaults to 0.0. |
0.0
|
z_norm |
float
|
Z normalisation regularisation coefficient ($\lambda_{norm} * (sum(Z^2)-n)^2$). Defaults to 1.0. |
1.0
|
individual |
bool
|
Return individual (row-wise) losses. Defaults to False. |
False
|
regularisation |
Optional[Callable]
|
Additional loss function. Defaults to None. |
None
|
Returns:
Type | Description |
---|---|
Callable[[Tensor, Tensor, Tensor, Tensor], Tensor]
|
Loss function for SLISEMAP |
Source code in slisemap/slisemap.py
1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 |
|
make_marginal_loss(X, Y, B, Z, Xnew, Ynew, local_model, local_loss, distance=torch.cdist, kernel=softmax_row_kernel, radius=3.5, lasso=0.0, ridge=0.0, jit=True)
Create a loss for adding new points with Slisemap.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
X |
Tensor
|
The existing data matrix [n_old, m]. |
required |
Y |
Tensor
|
The existing target matrix [n_old, k]. |
required |
B |
Tensor
|
The fitted models [n_old, p]. |
required |
Z |
Tensor
|
The fitted embedding [n_old, d]. |
required |
Xnew |
Tensor
|
The new data matrix [n_new, m]. |
required |
Ynew |
Tensor
|
The new target matrix [n_new, k]. |
required |
local_model |
Callable[[Tensor, Tensor], Tensor]
|
Prediction function for the local models. |
required |
local_loss |
Callable[[Tensor, Tensor], Tensor]
|
Loss function for the local models. |
required |
distance |
Callable[[Tensor, Tensor], Tensor]
|
Embedding distance function. Defaults to |
cdist
|
kernel |
Callable[[Tensor], Tensor]
|
Kernel for embedding distances, Defaults to |
softmax_row_kernel
|
radius |
float
|
For enforcing the radius of Z. Defaults to 3.5. |
3.5
|
lasso |
float
|
Lasso-regularisation coefficient for B ($\lambda_{lasso} * ||B||_1$). Defaults to 0.0. |
0.0
|
ridge |
float
|
Ridge-regularisation coefficient for B ($\lambda_{ridge} * ||B||_2$). Defaults to 0.0. |
0.0
|
jit |
bool
|
Just-In-Time compile the loss function. Defaults to True. |
True
|
Returns:
Name | Type | Description |
---|---|---|
loss |
Callable[[Tensor, Tensor], Tensor]
|
A marginal loss function that takes Bnew [n_new, p] and Znew [n_new, d]. |
set_new |
Callable[[Tensor, Tensor], None]
|
A function for changing the Xnew [n_new, m] and Ynew [n_new, k]. |
Source code in slisemap/slisemap.py
1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 |
|