Skip to content

slisemap.slipmap

Prototype version of Slisemap.

Instead of giving every data item its own local model we have a fixed grid of prototypes, where each prototype has a local model. This improves the scaling from quadratic to linear.

Slipmap

Slipmap: Faster and more robust [Slisemap][slisemap.slisemap.Slisemap].

This class contains the data and the parameters needed for finding a Slipmap solution. It also contains the solution (remember to optimise() first) in the form of an embedding matrix, see get_Z(), and a matrix of coefficients for the local model, see get_Bp(). Other methods of note are the various plotting methods, the save() method, and the predict() method.

The use of some regularisation is highly recommended. Slipmap comes with built-in lasso/L1 and ridge/L2 regularisation (if these are used it is also a good idea to normalise the data in advance).

Attributes:

Name Type Description
n int

The number of data items (X.shape[0]).

m int

The number of variables (X.shape[1]).

o int

The number of targets (Y.shape[1]).

d int

The number of embedding dimensions (Z.shape[1]).

p int

The number of prototypes (Zp.shape[1]).

q int

The number of coefficients (Bp.shape[1]).

intercept bool

Has an intercept term been added to X.

radius float

The radius of the embedding.

lasso float

Lasso regularisation coefficient.

ridge float

Ridge regularisation coefficient.

local_model CallableLike[predict]

Local model prediction function (see slisemap.local_models).

local_loss CallableLike[loss]

Local model loss function (see slisemap.local_models).

regularisation CallableLike[regularisation]

Additional regularisation function.

distance Callable[[Tensor, Tensor], Tensor]

Distance function.

kernel Callable[[Tensor], Tensor]

Kernel function.

jit bool

Just-In-Time compile the loss function for increased performance (see torch.jit.trace for caveats).

metadata

A dictionary for storing variable names and other metadata (see slisemap.utils.Metadata).

Source code in slisemap/slipmap.py
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
class Slipmap:
    """__Slipmap__: Faster and more robust `[Slisemap][slisemap.slisemap.Slisemap]`.

    This class contains the data and the parameters needed for finding a Slipmap solution.
    It also contains the solution (remember to [optimise()][slisemap.slipmap.Slipmap.optimize] first) in the form of an embedding matrix, see [get_Z()][slisemap.slipmap.Slipmap.get_Z], and a matrix of coefficients for the local model, see [get_Bp()][slisemap.slipmap.Slipmap.get_Bp].
    Other methods of note are the various plotting methods, the [save()][slisemap.slipmap.Slipmap.save] method, and the [predict()][slisemap.slipmap.Slipmap.predict] method.

    The use of some regularisation is highly recommended. Slipmap comes with built-in lasso/L1 and ridge/L2 regularisation (if these are used it is also a good idea to normalise the data in advance).

    Attributes:
        n: The number of data items (`X.shape[0]`).
        m: The number of variables (`X.shape[1]`).
        o: The number of targets (`Y.shape[1]`).
        d: The number of embedding dimensions (`Z.shape[1]`).
        p: The number of prototypes (`Zp.shape[1]`).
        q: The number of coefficients (`Bp.shape[1]`).
        intercept: Has an intercept term been added to `X`.
        radius: The radius of the embedding.
        lasso: Lasso regularisation coefficient.
        ridge: Ridge regularisation coefficient.
        local_model: Local model prediction function (see [slisemap.local_models][]).
        local_loss: Local model loss function (see [slisemap.local_models][]).
        regularisation: Additional regularisation function.
        distance: Distance function.
        kernel: Kernel function.
        jit: Just-In-Time compile the loss function for increased performance (see `torch.jit.trace` for caveats).
        metadata: A dictionary for storing variable names and other metadata (see [slisemap.utils.Metadata][]).
    """

    # Make Python faster and safer by not creating a Slipmap.__dict__
    __slots__ = (
        "_X",
        "_Y",
        "_Z",
        "_Bp",
        "_Zp",
        "_radius",
        "_lasso",
        "_ridge",
        "_intercept",
        "_local_model",
        "_local_loss",
        "_regularisation",
        "_loss",
        "_distance",
        "_kernel",
        "_jit",
        "metadata",
    )

    def __init__(
        self,
        X: ToTensor,
        y: ToTensor,
        radius: float = 2.0,
        d: int = 2,
        lasso: Optional[float] = None,
        ridge: Optional[float] = None,
        intercept: bool = True,
        local_model: Union[
            LocalModelCollection, CallableLike[ALocalModel.predict]
        ] = LinearRegression,
        local_loss: Optional[CallableLike[ALocalModel.loss]] = None,
        coefficients: Union[None, int, CallableLike[ALocalModel.coefficients]] = None,
        regularisation: Union[None, CallableLike[ALocalModel.regularisation]] = None,
        distance: CallableLike[squared_distance] = squared_distance,
        kernel: CallableLike[softmax_column_kernel] = softmax_column_kernel,
        Z0: Optional[ToTensor] = None,
        Bp0: Optional[ToTensor] = None,
        Zp0: Optional[ToTensor] = None,
        prototypes: Union[int, float] = 1.0,
        jit: bool = True,
        dtype: torch.dtype = torch.float32,
        device: Optional[torch.device] = None,
    ) -> None:
        """Create a Slipmap object.

        Args:
            X: Data matrix.
            y: Target vector or matrix.
            radius: The radius of the embedding Z. Defaults to 2.0.
            d: The number of embedding dimensions. Defaults to 2.
            lasso: Lasso regularisation coefficient. Defaults to 0.0.
            ridge: Ridge regularisation coefficient. Defaults to 0.0.
            intercept: Should an intercept term be added to `X`. Defaults to True.
            local_model: Local model prediction function (see [slisemap.local_models.identify_local_model][]). Defaults to [LinearRegression][slisemap.local_models.LinearRegression].
            local_loss: Local model loss function (see [slisemap.local_models.identify_local_model][]). Defaults to None.
            coefficients: The number of local model coefficients (see [slisemap.local_models.identify_local_model][]). Defaults to None.
            regularisation: Additional regularisation method (see [slisemap.local_models.identify_local_model][]). Defaults to None.
            distance: Distance function. Defaults to [squared_distance][slisemap.utils.squared_distance].
            kernel: Kernel function. Defaults to [softmax_column_kernel][slisemap.utils.softmax_column_kernel].
            Z0: Initial embedding for the data. Defaults to PCA.
            Bp0: Initial coefficients for the local models. Defaults to None.
            Zp0: Initial embedding for the prototypes. Defaults to `[make_grid][slisemap.utils.make_grid](prototypes)`.
            prototypes: Number of prototypes (if > 6) or prototype density (if < 6.0). Defaults to 1.0.
            jit: Just-In-Time compile the loss function for increased performance (see `torch.jit.trace` for caveats). Defaults to True.
            dtype: Floating type. Defaults to `torch.float32`.
            device: Torch device. Defaults to None.
        """
        for s in Slipmap.__slots__:
            # Initialise all attributes (to avoid attribute errors)
            setattr(self, s, None)
        if lasso is None and ridge is None:
            _warn(
                "Consider using regularisation!\n"
                + "\tRegularisation is important for handling small neighbourhoods, and also makes the local models more local."
                + " Lasso (l1) and ridge (l2) regularisation is built-in, via the parameters ``lasso`` and ``ridge``."
                + " Set ``lasso=0`` to disable this warning (if no regularisation is really desired).",
                Slipmap,
            )
        local_model, local_loss, coefficients, regularisation = identify_local_model(
            local_model, local_loss, coefficients, regularisation
        )
        self.lasso = 0.0 if lasso is None else lasso
        self.ridge = 0.0 if ridge is None else ridge
        self.kernel = kernel
        self.distance = distance
        self.local_model = local_model
        self.local_loss = local_loss
        self.regularisation = regularisation
        self._radius = radius
        self._intercept = intercept
        self._jit = jit
        self.metadata = Metadata(self)

        if device is None and isinstance(X, torch.Tensor):
            device = X.device
        tensorargs = {"device": device, "dtype": dtype}

        if Zp0 is None:
            if prototypes < 6.0:
                # Interpret prototypes as a density (prototypes per unit square)
                prototypes = radius**2 * 2 * np.pi * prototypes
            self._Zp = torch.as_tensor(make_grid(prototypes, d=d), **tensorargs)
        else:
            self._Zp = to_tensor(Zp0, **tensorargs)[0]
        _assert_shape(self._Zp, (self._Zp.shape[0], d), "Zp0", Slipmap)

        self._X, X_rows, X_columns = to_tensor(X, **tensorargs)
        if intercept:
            self._X = torch.cat((self._X, torch.ones_like(self._X[:, :1])), 1)
        n, m = self._X.shape
        self.metadata.set_variables(X_columns, intercept)

        self._Y, Y_rows, Y_columns = to_tensor(y, **tensorargs)
        self.metadata.set_targets(Y_columns)
        if len(self._Y.shape) == 1:
            self._Y = self._Y[:, None]
        _assert_shape(self._Y, (n, self._Y.shape[1]), "Y", Slipmap)

        if Z0 is None:
            self._Z = self._X @ PCA_rotation(self._X, d)
            if self._Z.shape[1] < d:
                _warn(
                    "The number of embedding dimensions is larger than the number of data dimensions",
                    Slisemap,
                )
                Z0fill = torch.zeros(size=[n, d - self._Z.shape[1]], **tensorargs)
                self._Z = torch.cat((self._Z, Z0fill), 1)
            Z_rows = None
        else:
            self._Z, Z_rows, Z_columns = to_tensor(Z0, **tensorargs)
            self.metadata.set_dimensions(Z_columns)

            _assert_shape(self._Z, (n, d), "Z0", Slipmap)
        self._normalise(True)

        if callable(coefficients):
            coefficients = coefficients(self._X, self._Y)
        if Bp0 is None:
            Bp0 = global_model(
                X=self._X,
                Y=self._Y,
                local_model=self.local_model,
                local_loss=self.local_loss,
                coefficients=coefficients,
                lasso=self.lasso,
                ridge=self.ridge,
            )
            if not torch.all(torch.isfinite(Bp0)):
                _warn(
                    "Optimising a global model as initialisation resulted in non-finite values. Consider using stronger regularisation (increase ``lasso`` or ``ridge``).",
                    Slipmap,
                )
                Bp0 = torch.zeros_like(Bp0)
            self._Bp = Bp0.expand((self.p, coefficients)).clone()
            B_rows = None
        else:
            self._Bp, B_rows, B_columns = to_tensor(Bp0, **tensorargs)
            if self._Bp.shape[0] == 1:
                self._Bp = self._Bp.expand((self.p, coefficients)).clone()
            _assert_shape(self._Bp, (self.p, coefficients), "Bp0", Slipmap)
            self.metadata.set_coefficients(B_columns)
        self.metadata.set_rows(X_rows, Y_rows, B_rows, Z_rows)
        if (
            device is None
            and self.n * self.m * self.p * self.o > 500_000
            and torch.cuda.is_available()
        ):
            self.cuda()

    @property
    def n(self) -> int:
        """The number of data items."""
        return self._X.shape[0]

    @property
    def m(self) -> int:
        """The number of variables (including potential intercept)."""
        return self._X.shape[1]

    @property
    def o(self) -> int:
        """The number of target variables (i.e. the number of classes)."""
        return self._Y.shape[-1]

    @property
    def d(self) -> int:
        """The number of embedding dimensions."""
        return self._Z.shape[1]

    @property
    def p(self) -> int:
        """The number of prototypes."""
        return self._Zp.shape[0]

    @property
    def q(self) -> int:
        """The number of local model coefficients."""
        return self._Bp.shape[1]

    @property
    def intercept(self) -> bool:
        """Is an intercept column added to the data?."""
        return self._intercept

    @property
    def radius(self) -> float:
        """The radius of the embedding."""
        return self._radius

    @radius.setter
    def radius(self, value: float) -> None:
        if self._radius != value:
            _assert(value >= 0, "radius must not be negative", Slipmap.radius)
            self._radius = value
            self._normalise(True)
            self._loss = None  # invalidate cached loss function

    @property
    def lasso(self) -> float:
        """Lasso regularisation strength."""
        return self._lasso

    @lasso.setter
    def lasso(self, value: float) -> None:
        if self._lasso != value:
            _assert(value >= 0, "lasso must not be negative", Slisemap.lasso)
            self._lasso = value
            self._loss = None  # invalidate cached loss function

    @property
    def ridge(self) -> float:
        """Ridge regularisation strength."""
        return self._ridge

    @ridge.setter
    def ridge(self, value: float) -> None:
        if self._ridge != value:
            _assert(value >= 0, "ridge must not be negative", Slisemap.ridge)
            self._ridge = value
            self._loss = None  # invalidate cached loss function

    @property
    def local_model(self) -> CallableLike[ALocalModel.predict]:
        """Local model prediction function. Takes in X[n, m] and B[n, q], and returns Ytilde[n, n, o]."""
        return self._local_model

    @local_model.setter
    def local_model(self, value: CallableLike[ALocalModel.predict]) -> None:
        if self._local_model != value:
            _assert(
                callable(value), "local_model must be callable", Slisemap.local_model
            )
            self._local_model = value
            self._loss = None  # invalidate cached loss function

    @property
    def local_loss(self) -> CallableLike[ALocalModel.loss]:
        """Local model loss function. Takes in Ytilde[n, n, o] and Y[n, o] and returns L[n, n]."""
        return self._local_loss

    @local_loss.setter
    def local_loss(self, value: CallableLike[ALocalModel.loss]) -> None:
        if self._local_loss != value:
            _assert(callable(value), "local_loss must be callable", Slisemap.local_loss)
            self._local_loss = value
            self._loss = None  # invalidate cached loss function

    @property
    def regularisation(self) -> CallableLike[ALocalModel.regularisation]:
        """Regularisation function. Takes in X, Y, Bp, Z, and Ytilde and returns an additional loss scalar."""
        return self._regularisation

    @regularisation.setter
    def regularisation(self, value: CallableLike[ALocalModel.regularisation]) -> None:
        if self._regularisation != value:
            _assert(
                callable(value),
                "regularisation function must be callable",
                Slisemap.regularisation,
            )
            self._regularisation = value
            self._loss = None  # invalidate cached loss function

    @property
    def distance(self) -> Callable[[torch.Tensor, torch.Tensor], torch.Tensor]:
        """Distance function. Takes in Z[n1, d] and Z[n2, d], and returns D[n1, n2]."""
        return self._distance

    @distance.setter
    def distance(
        self, value: Callable[[torch.Tensor, torch.Tensor], torch.Tensor]
    ) -> None:
        if self._distance != value:
            _assert(callable(value), "distance must be callable", Slisemap.distance)
            self._distance = value
            self._loss = None  # invalidate cached loss function

    @property
    def kernel(self) -> Callable[[torch.Tensor], torch.Tensor]:
        """Kernel function. Takes in D[n, n] and returns W[n, n]."""
        return self._kernel

    @kernel.setter
    def kernel(self, value: Callable[[torch.Tensor], torch.Tensor]) -> None:
        if self._kernel != value:
            _assert(callable(value), "kernel must be callable", Slisemap.kernel)
            self._kernel = value
            self._loss = None  # invalidate cached loss function

    @property
    def jit(self) -> bool:
        """Just-In-Time compile the loss function?"""  # noqa: D400
        return self._jit

    @jit.setter
    def jit(self, value: bool) -> None:
        if self._jit != value:
            self._jit = value
            self._loss = None  # invalidate cached loss function

    def get_Z(self, numpy: bool = True) -> Union[np.ndarray, torch.Tensor]:
        """Get the Z matrix (the embedding for all data items).

        Args:
            numpy: Return the matrix as a numpy (True) or pytorch (False) matrix. Defaults to True.

        Returns:
            The Z matrix `[n, d]`.
        """
        self._normalise()
        return tonp(self._Z) if numpy else self._Z

    def get_B(self, numpy: bool = True) -> Union[np.ndarray, torch.Tensor]:
        """Get the B matrix (the coefficients of the closest local model for all data items).

        Args:
            numpy: Return the matrix as a numpy (True) or pytorch (False) matrix. Defaults to True.

        Returns:
            The B matrix `[n, q]`.
        """
        B = self._Bp[self.get_closest(numpy=False)]
        return tonp(B) if numpy else B

    def get_Zp(self, numpy: bool = True) -> Union[np.ndarray, torch.Tensor]:
        """Get the Zp matrix (the embedding for the prototypes).

        Args:
            numpy: Return the matrix as a numpy (True) or pytorch (False) matrix. Defaults to True.

        Returns:
            The Zp matrix `[p, d]`.
        """
        return tonp(self._Zp) if numpy else self._Zp

    def get_Bp(self, numpy: bool = True) -> Union[np.ndarray, torch.Tensor]:
        """Get the Bp matrix (the local model coefficients for the prototypes).

        Args:
            numpy: Return the matrix as a numpy (True) or pytorch (False) matrix. Defaults to True.

        Returns:
            The Bp matrix `[p, q]`.
        """
        return tonp(self._Bp) if numpy else self._Bp

    def get_X(
        self, intercept: bool = True, numpy: bool = True
    ) -> Union[np.ndarray, torch.Tensor]:
        """Get the data matrix.

        Args:
            intercept: Include the intercept column (if ``self.intercept == True``). Defaults to True.
            numpy: Return the matrix as a numpy.ndarray instead of a torch.Tensor. Defaults to True.

        Returns:
            The X matrix `[n, m]`.
        """
        X = self._X if intercept or not self._intercept else self._X[:, :-1]
        return tonp(X) if numpy else X

    def get_Y(
        self, ravel: bool = False, numpy: bool = True
    ) -> Union[np.ndarray, torch.Tensor]:
        """Get the target matrix.

        Args:
            ravel: Remove the second dimension if it is singular (i.e. turn it into a vector). Defaults to False.
            numpy: Return the matrix as a numpy.ndarray instead of a torch.Tensor. Defaults to True.

        Returns:
            The Y matrix `[n, o]`.
        """
        Y = self._Y.ravel() if ravel else self._Y
        return tonp(Y) if numpy else Y

    def get_D(
        self,
        proto_rows: bool = True,
        proto_cols: bool = False,
        Z: Optional[torch.Tensor] = None,
        numpy: bool = True,
    ) -> Union[np.ndarray, torch.Tensor]:
        """Get the embedding distance matrix.

        Args:
            proto_rows: Calculate the distances with the prototype embeddings on the rows. Defaults to True.
            proto_cols: Calculate the distances with the prototype embeddings on the columns. Defaults to False.
            Z: Optional replacement for the training Z. Defaults to None.
            numpy: Return the matrix as a numpy (True) or pytorch (False) matrix. Defaults to True.

        Returns:
            The D matrix `[n or p, n or p]`.
        """
        if proto_rows and proto_cols:
            D = self._distance(self._Zp, self._Zp)
        else:
            Z = self.get_Z(numpy=False) if Z is None else Z
            if proto_rows:
                D = self._distance(self._Zp, Z)
            elif proto_cols:
                D = self._distance(Z, self._Zp)
            else:
                D = self._distance(Z, Z)
        return tonp(D) if numpy else D

    def get_W(
        self,
        proto_rows: bool = True,
        proto_cols: bool = False,
        Z: Optional[torch.Tensor] = None,
        numpy: bool = True,
    ) -> Union[np.ndarray, torch.Tensor]:
        """Get the weight matrix.

        Args:
            proto_rows: Calculate the weights with the prototype embeddings on the rows. Defaults to True.
            proto_cols: Calculate the weights with the prototype embeddings on the columns. Defaults to False.
            Z: Optional replacement for the training Z. Defaults to None.
            numpy: Return the matrix as a numpy.ndarray instead of a torch.Tensor. Defaults to True.

        Returns:
            The W matrix `[n or p, n or p]`.
        """
        D = self.get_D(numpy=False, proto_rows=proto_rows, proto_cols=proto_cols, Z=Z)
        W = self.kernel(D)
        return tonp(W) if numpy else W

    def get_L(
        self,
        X: Optional[ToTensor] = None,
        Y: Optional[ToTensor] = None,
        numpy: bool = True,
    ) -> Union[np.ndarray, torch.Tensor]:
        """Get the loss matrix.

        Args:
            X: Optional replacement for the training X. Defaults to None.
            Y: Optional replacement for the training Y. Defaults to None.
            numpy: Return the matrix as a numpy (True) or pytorch (False) matrix. Defaults to True.

        Returns:
            The L matrix `[p, n]`.
        """
        X = self._as_new_X(X)
        Y = self._as_new_Y(Y, X.shape[0])
        L = self.local_loss(self.local_model(X, self._Bp), Y)
        return tonp(L) if numpy else L

    def get_closest(
        self, Z: Optional[torch.Tensor] = None, numpy: bool = True
    ) -> Union[np.ndarray, torch.Tensor]:
        """Get the closest prototype for each data item.

        Args:
            Z: Optional replacement for the training Z. Defaults to None.
            numpy: Return the vector as a numpy (True) or pytorch (False) array. Defaults to True.

        Returns:
            Index vector `[n]`.
        """
        D = self.get_D(numpy=False, Z=Z, proto_rows=True, proto_cols=False)
        index = torch.argmin(D, 0)
        return tonp(index) if numpy else index

    def _as_new_X(self, X: Optional[ToTensor] = None) -> torch.Tensor:
        if X is None:
            return self._X
        X = torch.atleast_2d(to_tensor(X, **self.tensorargs)[0])
        if self._intercept and X.shape[1] == self.m - 1:
            X = torch.cat((X, torch.ones_like(X[:, :1])), 1)
        _assert_shape(X, (X.shape[0], self.m), "X", Slipmap._as_new_X)
        return X

    def _as_new_Y(self, Y: Optional[ToTensor] = None, n: int = -1) -> torch.Tensor:
        if Y is None:
            return self._Y
        Y = to_tensor(Y, **self.tensorargs)[0]
        if len(Y.shape) < 2:
            Y = torch.reshape(Y, (n, self.o))
        _assert_shape(Y, (n if n > 0 else Y.shape[0], self.o), "Y", Slipmap._as_new_Y)
        return Y

    @property
    def tensorargs(self) -> Dict[str, Any]:
        """When creating a new `torch.Tensor` add these keyword arguments to match the `dtype` and `device` of this Slisemap object."""
        return {"device": self._X.device, "dtype": self._X.dtype}

    def cuda(self, **kwargs: Any) -> None:
        """Move the tensors to CUDA memory (and run the calculations there).

        Note that this resets the random state.

        Keyword Args:
            **kwargs: Optional arguments to ``torch.Tensor.cuda``
        """
        X = self._X.cuda(**kwargs)
        self._X = X
        self._Y = self._Y.cuda(**kwargs)
        self._Z = self._Z.cuda(**kwargs)
        self._Bp = self._Bp.cuda(**kwargs)
        self._Zp = self._Zp.cuda(**kwargs)
        self._loss = None  # invalidate cached loss function

    def cpu(self, **kwargs: Any) -> None:
        """Move the tensors to CPU memory (and run the calculations there).

        Note that this resets the random state.

        Keyword Args:
            **kwargs: Optional arguments to ``torch.Tensor.cpu``
        """
        X = self._X.cpu(**kwargs)
        self._X = X
        self._Y = self._Y.cpu(**kwargs)
        self._Z = self._Z.cpu(**kwargs)
        self._Bp = self._Bp.cpu(**kwargs)
        self._Zp = self._Zp.cpu(**kwargs)
        self._loss = None  # invalidate cached loss function

    def copy(self) -> "Slipmap":
        """Make a copy of this Slipmap that references as much of the same torch-data as possible.

        Returns
            An almost shallow copy of this Slipmap object.
        """
        other = copy(self)  # Shallow copy!
        # Deep copy these:
        other._Z = other._Z.clone().detach()
        other._Bp = other._Bp.clone().detach()
        return other

    @classmethod
    def convert(
        cls, sm: Slisemap, keep_kernel: bool = False, **kwargs: Any
    ) -> "Slipmap":
        """Convert a Slisemap object into a Slipmap object.

        Args:
            sm: Slisemap object.
            keep_kernel: Use the kernel and distance functions from the Slisemap object. Defaults to False.

        Keyword Args:
            **kwargs: Other parameters forwarded (overriding) to Slipmap.

        Returns:
            Slipmap object for the same data as the Slisemap object.
        """
        if keep_kernel:
            kwargs.setdefault("kernel", sm.kernel)
            kwargs.setdefault("distance", sm.distance)
        kwargs.setdefault("radius", sm.radius)
        kwargs.setdefault("d", sm.d)
        kwargs.setdefault("lasso", sm.lasso)
        kwargs.setdefault("ridge", sm.ridge)
        kwargs.setdefault("intercept", sm.intercept)
        kwargs.setdefault("local_model", (sm.local_model, sm.local_loss, sm.q))
        kwargs.setdefault("Z0", sm.get_Z(scale=False, rotate=True, numpy=False))
        kwargs.setdefault("jit", sm.jit)
        B = sm.get_B(False)
        sp = Slipmap(
            X=sm.get_X(numpy=False, intercept=False),
            y=sm.get_Y(numpy=False),
            Bp0=B[:1, ...],
            **kwargs,
            **sm.tensorargs,
        )
        D = sp.get_D(numpy=False, proto_rows=True, proto_cols=False)
        sp._Bp[...] = B[torch.argmin(D, 1), ...]
        return sp

    def into(self, keep_kernel: bool = False) -> Slisemap:
        """Convert a Slipmap object into a Slisemap object.

        Args:
            keep_kernel: Use the kernel from the Slipmap object. Defaults to False.

        Returns:
            Slisemap object for the same data as the Slipmap object.
        """
        kwargs = {}
        if keep_kernel:
            kwargs["kernel"] = self.kernel
        return Slisemap(
            X=self.get_X(numpy=False, intercept=False),
            y=self.get_Y(numpy=False),
            radius=self.radius,
            d=self.d,
            lasso=self.lasso,
            ridge=self.ridge,
            intercept=self.intercept,
            local_model=self.local_model,
            local_loss=self.local_loss,
            coefficients=self.q,
            distance=self.distance,
            B0=self.get_B(numpy=False),
            Z0=self.get_Z(numpy=False),
            jit=self.jit,
            **{**self.tensorargs, **kwargs},
        )

    def save(
        self,
        f: Union[str, PathLike, BinaryIO],
        any_extension: bool = False,
        compress: Union[bool, int] = True,
        **kwargs: Any,
    ) -> None:
        """Save the Slipmap object to a file.

        This method uses ``torch.save`` (which uses ``pickle`` for the non-pytorch properties).
        This means that lambda-functions are not supported (unless a custom pickle module is used, see ``torch.save``).

        Note that the random state is not saved, only the initial seed (if set).

        The default file extension is ".sp".

        Args:
            f: Either a Path-like object or a (writable) File-like object.
            any_extension: Do not check the file extension. Defaults to False.
            compress: Compress the file with LZMA. Either a bool or a compression preset [0, 9]. Defaults to True.

        Keyword Args:
            **kwargs: Parameters forwarded to ``torch.save``.
        """
        if not any_extension and isinstance(f, (str, PathLike)):  # noqa: SIM102
            if not str(f).endswith(".sp"):
                _warn(
                    "When saving Slipmap objects, consider using the '.sp' extension for consistency.",
                    Slipmap.save,
                )
        loss = self._loss
        try:
            self.metadata.root = None
            self._Z = self._Z.detach()
            self._Bp = self._Bp.detach()
            self._loss = None
            if isinstance(compress, int) and compress > 0:
                with lzma.open(f, "wb", preset=compress) as f2:
                    torch.save(self, f2, **kwargs)
            elif compress:
                with lzma.open(f, "wb") as f2:
                    torch.save(self, f2, **kwargs)
            else:
                torch.save(self, f, **kwargs)
        finally:
            self.metadata.root = self
            self._loss = loss

    @classmethod
    def load(
        cls,
        f: Union[str, PathLike, BinaryIO],
        device: Union[None, str, torch.device] = None,
        map_location: Optional[object] = None,
        **kwargs: Any,
    ) -> "Slipmap":
        """Load a Slipmap object from a file.

        This function uses ``torch.load``, so the tensors are restored to their previous devices.
        Use ``device="cpu"`` to avoid assuming that the same device exists.
        This is useful if the Slipmap object has been trained on a GPU, but the current computer lacks a GPU.

        Note that this is a classmethod, use it with: ``Slipmap.load(...)``.

        SAFETY: This function is based on `torch.load` which (by default) uses `pickle`.
        Do not use `Slipmap.load` on untrusted files, since `pickle` can run arbitrary Python code.

        Args:
            f: Either a Path-like object or a (readable) File-like object.
            device: Device to load the tensors to (or the original if None). Defaults to None.
            map_location: The same as `device` (this is the name used by `torch.load`). Defaults to None.

        Keyword Args:
            **kwargs: Parameters forwarded to `torch.load`.

        Returns:
            The loaded Slipmap object.
        """
        if device is None:
            device = map_location
        try:
            with lzma.open(f, "rb") as f2:
                sm = torch.load(f2, map_location=device, **kwargs)
        except lzma.LZMAError:
            sm: Slipmap = torch.load(f, map_location=device, **kwargs)
        return sm

    def __setstate__(self, data: Any) -> None:
        # Handling loading of Slipmap objects from older versions
        if not isinstance(data, dict):
            data = next(d for d in data if isinstance(d, dict))
        for k, v in data.items():
            try:
                setattr(self, k, v)
            except AttributeError as e:
                _warn(e, Slipmap.__setstate__)
        if isinstance(getattr(self, "metadata", {}), Metadata):
            self.metadata.root = self
        else:
            self.metadata = Metadata(self, **getattr(self, "metadata", {}))
        if not hasattr(self, "_regularisation"):
            self._regularisation = ALocalModel.regularisation

    def _get_loss_fn(self, individual: bool = False) -> CallableLike[ALocalModel.loss]:
        """Return the Slipmap loss function.

        This function JITs and caches the loss function for efficiency.

        Args:
            individual: Make a loss function for individual losses. Defaults to False.

        Returns:
            Loss function `(X, Y, Z, Bp, Zp) -> loss`.
        """
        if not individual and self._loss is not None:
            return self._loss

        def loss(
            X: torch.Tensor,
            Y: torch.Tensor,
            Z: torch.Tensor,
            Bp: torch.Tensor,
            Zp: torch.Tensor,
        ) -> torch.Tensor:
            """Slipmap loss function.

            Args:
                X: Data matrix [n, m].
                Y: Target matrix [n, k].
                Z: Embedding matrix [n, d].
                Bp: Local models [o, p].
                Zp: Prototype embeddings [o, d].

            Returns:
                The loss value.
            """
            if self.radius > 0.0:
                epsilon = self.radius * torch.finfo(Z.dtype).eps / 2
                scale = torch.sqrt(torch.sum(Z**2) / Z.shape[0])
                Z = Z * (self.radius / (scale + epsilon))
            W = self.kernel(self.distance(Zp, Z))
            Ytilde = self.local_model(X, Bp)
            L = self.local_loss(Ytilde, Y)
            loss = torch.sum(W * L, dim=0 if individual else ())
            if not individual and self.lasso > 0.0:
                loss += self.lasso * torch.sum(torch.abs(Bp))
            if not individual and self.ridge > 0.0:
                loss += self.ridge * torch.sum(Bp**2)
            if not individual and self.radius > 0.0:
                loss += 1e-4 * (scale - self.radius) ** 2
            if not individual:
                loss += self.regularisation(self._X, self._Y, Z, self._Bp, Ytilde)
            return loss

        if individual:
            return loss
        if self._jit:
            # JITting the loss function improves the performance
            ex = (self._X[:1], self._Y[:1], self._Z[:1], self._Bp[:1], self._Zp[:1])
            loss = torch.jit.trace(loss, ex)
        # Caching the loss function
        self._loss = loss
        return self._loss

    def value(
        self, individual: bool = False, numpy: bool = True
    ) -> Union[float, np.ndarray, torch.Tensor]:
        """Calculate the loss value.

        Args:
            individual: Give loss individual loss values for the data points. Defaults to False.
            numpy: Return the predictions as a `numpy.ndarray` instead of `torch.Tensor`. Defaults to True.

        Returns:
            The loss value(s).
        """
        loss = self._get_loss_fn(individual)
        loss = loss(X=self._X, Y=self._Y, Z=self._Z, Bp=self._Bp, Zp=self._Zp)
        if individual:
            return tonp(loss) if numpy else loss
        else:
            return loss.cpu().item() if numpy else loss

    def _normalise(self, both: bool = False) -> None:
        """Normalise Z."""
        if self.radius > 0:
            epsilon = self.radius * torch.finfo(self._Z.dtype).eps / 2
            if both:  # Normalise the prototype embedding
                scale = torch.sqrt(torch.sum(self._Zp**2) / self.p)
                proto_rad = self.radius * np.sqrt(2)
                if not np.allclose(proto_rad, scale.cpu().item()):
                    self._Zp = self._Zp * (proto_rad / (scale + epsilon))
            z_sum = torch.sum(self._Z**2, 1, True)
            scale = torch.sqrt(z_sum.mean())
            if not np.allclose(scale.cpu().item(), self.radius):
                self._Z *= self.radius / (scale + epsilon)

    def lbfgs(
        self,
        max_iter: int = 500,
        verbose: bool = False,
        *,
        only_B: bool = False,
        only_Z: bool = False,
        **kwargs: Any,
    ) -> float:
        """Optimise Slipmap using LBFGS.

        Args:
            max_iter: Maximum number of LBFGS iterations. Defaults to 500.
            verbose: Print status messages. Defaults to False.
            only_B: Only optimise Bp. Defaults to False.
            only_Z: Only optimise Z. Defaults to False.

        Keyword Args:
            **kwargs: Keyword arguments forwarded to [LBFGS][slisemap.utils.LBFGS].

        Returns:
            The loss value.
        """
        if only_B == only_Z:
            only_B = only_Z = True
        Bp = self._Bp
        Z = self._Z
        if only_B:
            Bp = Bp.clone().requires_grad_(True)
        if only_Z:
            Z = Z.clone().requires_grad_(True)

        loss_ = self._get_loss_fn()
        loss_fn = lambda: loss_(self._X, self._Y, Z, Bp, self._Zp)  # noqa: E731
        pre_loss = loss_fn().cpu().detach().item()

        opt = [Bp] if not only_Z else ([Z] if not only_B else [Z, Bp])
        LBFGS(loss_fn, opt, max_iter=max_iter, verbose=verbose, **kwargs)
        post_loss = loss_fn().cpu().detach().item()

        if post_loss < pre_loss:
            if only_Z:
                self._Z = Z.detach()
                self._normalise()
            if only_B:
                self._Bp = Bp.detach()
            return post_loss
        else:
            if verbose:
                print("Slipmap.lbfgs: No improvement found")
            return pre_loss

    def escape(
        self, lerp: float = 0.9, outliers: bool = True, B_iter: int = 10
    ) -> None:
        """Escape from a local optimum by moving each data item embedding towards the most suitable prototype embedding.

        Args:
            lerp: Linear interpolation between the old (0.0) and the new (1.0) embedding position. Defaults to 0.9.
            outliers: Check for and reset embeddings outside the prototype grid. Defaults to True.
            B_iter: Optimise B for `B_iter` number of LBFGS iterations. Set `B_iter=0` to disable. Defaults to 10.
        """
        if lerp <= 0.0:
            _warn("Escaping with `lerp <= 0` does nothing!", Slipmap.escape)
            return
        L = self.get_L(numpy=False)
        W = self.get_W(numpy=False, proto_rows=True, proto_cols=True)
        index = torch.argmin(W @ L, 0)
        if lerp >= 1.0:
            self._Z = self._Zp[index].clone()
        else:
            if outliers:  # Check for and reset outliers in the embedding
                scale = torch.sum(self._Z**2, 1)
                radius = torch.max(torch.sum(self._Zp**2, 1))
                if torch.any(scale >= radius):
                    self._Z[scale >= radius] = 0.0
            self._Z = (1.0 - lerp) * self._Z + lerp * self._Zp[index]
        self._normalise()
        if B_iter > 0:
            self.lbfgs(max_iter=B_iter, only_B=True)

    def optimize(
        self,
        patience: int = 2,
        max_escapes: int = 100,
        max_iter: int = 500,
        only_B: bool = False,
        verbose: Literal[0, 1, 2] = 0,
        escape_kws: Dict[str, object] = {},
        **kwargs: Any,
    ) -> float:
        """Optimise Slipmap by alternating between [Slipmap.lbfgs][slisemap.slipmap.Slipmap.lbfgs] and [Slipmap.escape][slisemap.slipmap.Slipmap.escape] until convergence.

        Statistics for the optimisation can be found in `self.metadata["optimize_time"]` and `self.metadata["optimize_loss"]`.

        Args:
            patience: Number of escapes without improvement before stopping. Defaults to 2.
            max_escapes: aximum numbers optimisation rounds. Defaults to 100.
            max_iter: Maximum number of LBFGS iterations per round. Defaults to 500.
            only_B: Only optimise the local models, not the embedding. Defaults to False.
            verbose: Print status messages (0: no, 1: some, 2: all). Defaults to 0.
            escape_kws: Optional keyword arguments to `Slipmap.escape`. Defaults to {}.

        Keyword Args:
            **kwargs: Keyword arguments forwaded to `Slipmap.lbfgs`.

        Returns:
            The loss value.
        """
        loss = np.repeat(np.inf, 2)
        time = timer()
        loss[0] = self.lbfgs(
            max_iter=max_iter,
            only_B=True,
            increase_tolerance=not only_B,
            verbose=verbose > 1,
            **kwargs,
        )
        history = [loss[0]]
        if verbose:
            i = 0
            print(f"Slipmap.optimise LBFGS  {0:2d}: {loss[0]:.2f}")
        if only_B:
            self.metadata["optimize_time"] = timer() - time
            self.metadata["optimize_loss"] = history
            return loss[0]
        cc = CheckConvergence(patience, max_escapes)
        while not cc.has_converged(loss, self.copy, verbose=verbose > 1):
            self.escape(**escape_kws)
            loss[1] = self.value()
            if verbose:
                print(f"Slipmap.optimise Escape {i:2d}: {loss[1]:.2f}")
            loss[0] = self.lbfgs(
                max_iter, increase_tolerance=True, verbose=verbose > 1, **kwargs
            )
            history.append(loss[1])
            history.append(loss[0])
            if verbose:
                i += 1
                print(f"Slipmap.optimise LBFGS  {i:2d}: {loss[0]:.2f}")
        self._Z = cc.optimal._Z
        self._Bp = cc.optimal._Bp
        loss = self.lbfgs(
            max_iter * 2, increase_tolerance=False, verbose=verbose > 1, **kwargs
        )
        history.append(loss)
        self.metadata["optimize_time"] = timer() - time
        self.metadata["optimize_loss"] = history
        if verbose:
            print(f"Slipmap.optimise Final    : {loss:.2f}")
        return loss

    optimise = optimize

    def predict(
        self,
        X: ToTensor,
        weighted: bool = True,
        numpy: bool = True,
    ) -> Union[np.ndarray, torch.Tensor]:
        """Predict the outcome for new data items.

        This function uses the nearest neighbour in X space to find the embedding.
        Then the prediction is made with the local model (of the closest prototype).

        Args:
            X: Data matrix.
            weighted: Use a weighted model instead of just the nearest. Defaults to True
            numpy: Return the predictions as a `numpy.ndarray` instead of `torch.Tensor`. Defaults to True.

        Returns:
            Predicted Y:s.
        """
        X = self._as_new_X(X)
        xnn = torch.cdist(X, self._X).argmin(1)
        if weighted:
            Y = self.local_model(X, self._Bp)
            D = self.get_D(True, False, numpy=False)[:, xnn]
            W = softmax_column_kernel(D)
            Y = torch.sum(W[..., None] * Y, 0)
        else:
            B = self.get_B(False)[xnn, :]
            Y = local_predict(X, B, self.local_model)
        return tonp(Y) if numpy else Y

    def get_model_clusters(
        self,
        clusters: int,
        B: Optional[np.ndarray] = None,
        Z: Optional[np.ndarray] = None,
        random_state: int = 42,
        **kwargs: Any,
    ) -> Tuple[np.ndarray, np.ndarray]:
        """Cluster the local model coefficients using k-means (from scikit-learn).

        This method (with a fixed random seed) is used for plotting Slipmap solutions.

        Args:
            clusters: Number of clusters.
            B: B matrix. Defaults to `self.get_B()`.
            Z: Z matrix. Defaults to `self.get_Z()`.
            random_state: random_state for the KMeans clustering. Defaults to 42.

        Keyword Args:
            **kwargs: Additional arguments to `sklearn.cluster.KMeans` or `sklearn.cluster.MiniBatchKMeans` if `self.n >= 1024`.

        Returns:
            labels: Vector of cluster labels.
            centres: Matrix of cluster centres.
        """
        B = B if B is not None else self.get_B()
        Z = Z if Z is not None else self.get_Z()
        with warnings.catch_warnings():
            warnings.simplefilter("ignore", FutureWarning)
            # Some sklearn versions warn about changing defaults for KMeans
            kwargs.setdefault("random_state", random_state)
            if self.n >= 1024:
                km = MiniBatchKMeans(clusters, **kwargs).fit(B)
            else:
                km = KMeans(clusters, **kwargs).fit(B)
        ord = np.argsort([Z[km.labels_ == k, 0].mean() for k in range(clusters)])
        return np.argsort(ord)[km.labels_], km.cluster_centers_[ord]

    def plot(
        self,
        title: str = "",
        clusters: Union[None, int, np.ndarray] = None,
        bars: Union[bool, int, Sequence[str]] = True,
        jitter: Union[float, np.ndarray] = 0.0,
        show: bool = True,
        bar: Union[None, bool, int] = None,
        **kwargs: Any,
    ) -> Optional[Figure]:
        """Plot the Slipmap solution using seaborn.

        Args:
            title: Title of the plot. Defaults to "".
            clusters: Can be None (plot individual losses), an int (plot k-means clusters of Bp), or an array of known cluster id:s. Defaults to None.
            bars: If `clusters is not None`, plot the local models in a bar plot. If ``bar`` is an int then only plot the most influential variables. Defaults to True.
            jitter: Add random (normal) noise to the embedding, or a matrix with pre-generated noise matching Z. Defaults to 0.0.
            show: Show the plot. Defaults to True.
            bar: Alternative spelling for `bars`. Defaults to None.

        Keyword Args:
            **kwargs: Additional arguments to [plot_solution][slisemap.plot.plot_solution] and `plt.subplots`.

        Returns:
            Matplotlib figure if `show=False`.
        """
        if bar is not None:
            bars = bar
        B = self.get_B()
        Z = self.get_Z()
        if clusters is None:
            loss = tonp(self.local_loss(self.predict(self._X, numpy=False), self._Y))
            clusters = None
            centers = None
        else:
            loss = None
            if isinstance(clusters, int):
                clusters, centers = self.get_model_clusters(clusters, B, Z)
            else:
                clusters = np.asarray(clusters)
                centers = np.stack(
                    [np.mean(B[clusters == c, :], 0) for c in np.unique(clusters)], 0
                )
        fig = plot_solution(
            Z=Z,
            B=B,
            loss=loss,
            clusters=clusters,
            centers=centers,
            coefficients=self.metadata.get_coefficients(),
            dimensions=self.metadata.get_dimensions(long=True),
            title=title,
            bars=bars,
            jitter=jitter,
            **kwargs,
        )
        plot_prototypes(self.get_Zp(), fig.axes[0])
        if show:
            plt.show()
        else:
            return fig

    def plot_position(
        self,
        X: Optional[ToTensor] = None,
        Y: Optional[ToTensor] = None,
        index: Union[None, int, Sequence[int]] = None,
        title: str = "",
        jitter: Union[float, np.ndarray] = 0.0,
        legend_inside: bool = True,
        show: bool = True,
        **kwargs: Any,
    ) -> Optional[sns.FacetGrid]:
        """Plot local losses for alternative locations for the selected item(s).

        Indicate the selected item(s) either via `X` and `Y` or via `index`.

        Args:
            X: Data matrix for the selected data item(s). Defaults to None.
            Y: Response matrix for the selected data item(s). Defaults to None.
            index: Index/indices of the selected data item(s). Defaults to None.
            title: Title of the plot. Defaults to "".
            jitter: Add random (normal) noise to the embedding, or a matrix with pre-generated noise matching Z. Defaults to 0.0.
            legend_inside: Move the legend inside the grid (if there is an empty cell). Defaults to True.
            show: Show the plot. Defaults to True.

        Keyword Args:
            **kwargs: Additional arguments to `seaborn.relplot`.

        Returns:
            `seaborn.FacetGrid` if `show=False`.
        """
        if index is None:
            _assert(
                X is not None and Y is not None,
                "Either index or X and Y must be given",
                Slipmap.plot_position,
            )
            L = self.get_L(X=X, Y=Y)
        else:
            if isinstance(index, int):
                index = [index]
            L = self.get_L()[:, index]
        g = plot_position(
            Z=self.get_Zp(),
            L=L,
            Zs=self.get_Z()[index, :] if index is not None else None,
            dimensions=self.metadata.get_dimensions(long=True),
            title=title,
            jitter=jitter,
            legend_inside=legend_inside,
            marker_size=6.0,
            **kwargs,
        )
        # plot_prototypes(self.get_Zp(), *g.axes.flat)
        if show:
            plt.show()
        else:
            return g

    def plot_dist(
        self,
        title: str = "",
        clusters: Union[None, int, np.ndarray] = None,
        unscale: bool = True,
        scatter: bool = False,
        jitter: float = 0.0,
        legend_inside: bool = True,
        show: bool = True,
        **kwargs: Any,
    ) -> Optional[sns.FacetGrid]:
        """Plot the distribution of the variables, either as density plots (with clusters) or as scatterplots.

        Args:
            title: Title of the plot. Defaults to "".
            clusters: Number of cluster or vector of cluster labels. Defaults to None.
            scatter: Use scatterplots instead of density plots (clusters are ignored). Defaults to False.
            unscale: Unscale `X` and `Y` if scaling metadata has been given (see `Slisemap.metadata.set_scale_X`). Defaults to True.
            jitter: Add jitter to the scatterplots. Defaults to 0.0.
            legend_inside: Move the legend inside the grid (if there is an empty cell). Defaults to True.
            show: Show the plot. Defaults to True.

        Keyword Args:
            **kwargs: Additional arguments to `seaborn.relplot` or `seaborn.scatterplot`.

        Returns:
            `seaborn.FacetGrid` if `show=False`.
        """
        X = self.get_X(intercept=False)
        Y = self.get_Y()
        if unscale:
            X = self.metadata.unscale_X(X)
            Y = self.metadata.unscale_Y(Y)
        loss = tonp(self.local_loss(self.predict(self._X, numpy=False), self._Y))
        if isinstance(clusters, int):
            clusters, _ = self.get_model_clusters(clusters)
        g = plot_dist(
            X=X,
            Y=Y,
            Z=self.get_Z(),
            loss=loss,
            variables=self.metadata.get_variables(False),
            targets=self.metadata.get_targets(),
            dimensions=self.metadata.get_dimensions(long=True),
            title=title,
            clusters=clusters,
            scatter=scatter,
            jitter=jitter,
            legend_inside=legend_inside,
            **kwargs,
        )
        if scatter:
            plot_prototypes(self.get_Zp(), *g.axes.flat)
        if show:
            plt.show()
        else:
            return g

__init__(X, y, radius=2.0, d=2, lasso=None, ridge=None, intercept=True, local_model=LinearRegression, local_loss=None, coefficients=None, regularisation=None, distance=squared_distance, kernel=softmax_column_kernel, Z0=None, Bp0=None, Zp0=None, prototypes=1.0, jit=True, dtype=torch.float32, device=None)

Create a Slipmap object.

Parameters:

Name Type Description Default
X ToTensor

Data matrix.

required
y ToTensor

Target vector or matrix.

required
radius float

The radius of the embedding Z. Defaults to 2.0.

2.0
d int

The number of embedding dimensions. Defaults to 2.

2
lasso Optional[float]

Lasso regularisation coefficient. Defaults to 0.0.

None
ridge Optional[float]

Ridge regularisation coefficient. Defaults to 0.0.

None
intercept bool

Should an intercept term be added to X. Defaults to True.

True
local_model Union[LocalModelCollection, CallableLike[predict]]

Local model prediction function (see slisemap.local_models.identify_local_model). Defaults to LinearRegression.

LinearRegression
local_loss Optional[CallableLike[loss]]

Local model loss function (see slisemap.local_models.identify_local_model). Defaults to None.

None
coefficients Union[None, int, CallableLike[coefficients]]

The number of local model coefficients (see slisemap.local_models.identify_local_model). Defaults to None.

None
regularisation Union[None, CallableLike[regularisation]]

Additional regularisation method (see slisemap.local_models.identify_local_model). Defaults to None.

None
distance CallableLike[squared_distance]

Distance function. Defaults to squared_distance.

squared_distance
kernel CallableLike[softmax_column_kernel]

Kernel function. Defaults to softmax_column_kernel.

softmax_column_kernel
Z0 Optional[ToTensor]

Initial embedding for the data. Defaults to PCA.

None
Bp0 Optional[ToTensor]

Initial coefficients for the local models. Defaults to None.

None
Zp0 Optional[ToTensor]

Initial embedding for the prototypes. Defaults to [make_grid][slisemap.utils.make_grid](prototypes).

None
prototypes Union[int, float]

Number of prototypes (if > 6) or prototype density (if < 6.0). Defaults to 1.0.

1.0
jit bool

Just-In-Time compile the loss function for increased performance (see torch.jit.trace for caveats). Defaults to True.

True
dtype dtype

Floating type. Defaults to torch.float32.

float32
device Optional[device]

Torch device. Defaults to None.

None
Source code in slisemap/slipmap.py
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
def __init__(
    self,
    X: ToTensor,
    y: ToTensor,
    radius: float = 2.0,
    d: int = 2,
    lasso: Optional[float] = None,
    ridge: Optional[float] = None,
    intercept: bool = True,
    local_model: Union[
        LocalModelCollection, CallableLike[ALocalModel.predict]
    ] = LinearRegression,
    local_loss: Optional[CallableLike[ALocalModel.loss]] = None,
    coefficients: Union[None, int, CallableLike[ALocalModel.coefficients]] = None,
    regularisation: Union[None, CallableLike[ALocalModel.regularisation]] = None,
    distance: CallableLike[squared_distance] = squared_distance,
    kernel: CallableLike[softmax_column_kernel] = softmax_column_kernel,
    Z0: Optional[ToTensor] = None,
    Bp0: Optional[ToTensor] = None,
    Zp0: Optional[ToTensor] = None,
    prototypes: Union[int, float] = 1.0,
    jit: bool = True,
    dtype: torch.dtype = torch.float32,
    device: Optional[torch.device] = None,
) -> None:
    """Create a Slipmap object.

    Args:
        X: Data matrix.
        y: Target vector or matrix.
        radius: The radius of the embedding Z. Defaults to 2.0.
        d: The number of embedding dimensions. Defaults to 2.
        lasso: Lasso regularisation coefficient. Defaults to 0.0.
        ridge: Ridge regularisation coefficient. Defaults to 0.0.
        intercept: Should an intercept term be added to `X`. Defaults to True.
        local_model: Local model prediction function (see [slisemap.local_models.identify_local_model][]). Defaults to [LinearRegression][slisemap.local_models.LinearRegression].
        local_loss: Local model loss function (see [slisemap.local_models.identify_local_model][]). Defaults to None.
        coefficients: The number of local model coefficients (see [slisemap.local_models.identify_local_model][]). Defaults to None.
        regularisation: Additional regularisation method (see [slisemap.local_models.identify_local_model][]). Defaults to None.
        distance: Distance function. Defaults to [squared_distance][slisemap.utils.squared_distance].
        kernel: Kernel function. Defaults to [softmax_column_kernel][slisemap.utils.softmax_column_kernel].
        Z0: Initial embedding for the data. Defaults to PCA.
        Bp0: Initial coefficients for the local models. Defaults to None.
        Zp0: Initial embedding for the prototypes. Defaults to `[make_grid][slisemap.utils.make_grid](prototypes)`.
        prototypes: Number of prototypes (if > 6) or prototype density (if < 6.0). Defaults to 1.0.
        jit: Just-In-Time compile the loss function for increased performance (see `torch.jit.trace` for caveats). Defaults to True.
        dtype: Floating type. Defaults to `torch.float32`.
        device: Torch device. Defaults to None.
    """
    for s in Slipmap.__slots__:
        # Initialise all attributes (to avoid attribute errors)
        setattr(self, s, None)
    if lasso is None and ridge is None:
        _warn(
            "Consider using regularisation!\n"
            + "\tRegularisation is important for handling small neighbourhoods, and also makes the local models more local."
            + " Lasso (l1) and ridge (l2) regularisation is built-in, via the parameters ``lasso`` and ``ridge``."
            + " Set ``lasso=0`` to disable this warning (if no regularisation is really desired).",
            Slipmap,
        )
    local_model, local_loss, coefficients, regularisation = identify_local_model(
        local_model, local_loss, coefficients, regularisation
    )
    self.lasso = 0.0 if lasso is None else lasso
    self.ridge = 0.0 if ridge is None else ridge
    self.kernel = kernel
    self.distance = distance
    self.local_model = local_model
    self.local_loss = local_loss
    self.regularisation = regularisation
    self._radius = radius
    self._intercept = intercept
    self._jit = jit
    self.metadata = Metadata(self)

    if device is None and isinstance(X, torch.Tensor):
        device = X.device
    tensorargs = {"device": device, "dtype": dtype}

    if Zp0 is None:
        if prototypes < 6.0:
            # Interpret prototypes as a density (prototypes per unit square)
            prototypes = radius**2 * 2 * np.pi * prototypes
        self._Zp = torch.as_tensor(make_grid(prototypes, d=d), **tensorargs)
    else:
        self._Zp = to_tensor(Zp0, **tensorargs)[0]
    _assert_shape(self._Zp, (self._Zp.shape[0], d), "Zp0", Slipmap)

    self._X, X_rows, X_columns = to_tensor(X, **tensorargs)
    if intercept:
        self._X = torch.cat((self._X, torch.ones_like(self._X[:, :1])), 1)
    n, m = self._X.shape
    self.metadata.set_variables(X_columns, intercept)

    self._Y, Y_rows, Y_columns = to_tensor(y, **tensorargs)
    self.metadata.set_targets(Y_columns)
    if len(self._Y.shape) == 1:
        self._Y = self._Y[:, None]
    _assert_shape(self._Y, (n, self._Y.shape[1]), "Y", Slipmap)

    if Z0 is None:
        self._Z = self._X @ PCA_rotation(self._X, d)
        if self._Z.shape[1] < d:
            _warn(
                "The number of embedding dimensions is larger than the number of data dimensions",
                Slisemap,
            )
            Z0fill = torch.zeros(size=[n, d - self._Z.shape[1]], **tensorargs)
            self._Z = torch.cat((self._Z, Z0fill), 1)
        Z_rows = None
    else:
        self._Z, Z_rows, Z_columns = to_tensor(Z0, **tensorargs)
        self.metadata.set_dimensions(Z_columns)

        _assert_shape(self._Z, (n, d), "Z0", Slipmap)
    self._normalise(True)

    if callable(coefficients):
        coefficients = coefficients(self._X, self._Y)
    if Bp0 is None:
        Bp0 = global_model(
            X=self._X,
            Y=self._Y,
            local_model=self.local_model,
            local_loss=self.local_loss,
            coefficients=coefficients,
            lasso=self.lasso,
            ridge=self.ridge,
        )
        if not torch.all(torch.isfinite(Bp0)):
            _warn(
                "Optimising a global model as initialisation resulted in non-finite values. Consider using stronger regularisation (increase ``lasso`` or ``ridge``).",
                Slipmap,
            )
            Bp0 = torch.zeros_like(Bp0)
        self._Bp = Bp0.expand((self.p, coefficients)).clone()
        B_rows = None
    else:
        self._Bp, B_rows, B_columns = to_tensor(Bp0, **tensorargs)
        if self._Bp.shape[0] == 1:
            self._Bp = self._Bp.expand((self.p, coefficients)).clone()
        _assert_shape(self._Bp, (self.p, coefficients), "Bp0", Slipmap)
        self.metadata.set_coefficients(B_columns)
    self.metadata.set_rows(X_rows, Y_rows, B_rows, Z_rows)
    if (
        device is None
        and self.n * self.m * self.p * self.o > 500_000
        and torch.cuda.is_available()
    ):
        self.cuda()

n: int property

The number of data items.

m: int property

The number of variables (including potential intercept).

o: int property

The number of target variables (i.e. the number of classes).

d: int property

The number of embedding dimensions.

p: int property

The number of prototypes.

q: int property

The number of local model coefficients.

intercept: bool property

Is an intercept column added to the data?.

radius: float property writable

The radius of the embedding.

lasso: float property writable

Lasso regularisation strength.

ridge: float property writable

Ridge regularisation strength.

local_model: CallableLike[ALocalModel.predict] property writable

Local model prediction function. Takes in X[n, m] and B[n, q], and returns Ytilde[n, n, o].

local_loss: CallableLike[ALocalModel.loss] property writable

Local model loss function. Takes in Ytilde[n, n, o] and Y[n, o] and returns L[n, n].

regularisation: CallableLike[ALocalModel.regularisation] property writable

Regularisation function. Takes in X, Y, Bp, Z, and Ytilde and returns an additional loss scalar.

distance: Callable[[torch.Tensor, torch.Tensor], torch.Tensor] property writable

Distance function. Takes in Z[n1, d] and Z[n2, d], and returns D[n1, n2].

kernel: Callable[[torch.Tensor], torch.Tensor] property writable

Kernel function. Takes in D[n, n] and returns W[n, n].

jit: bool property writable

Just-In-Time compile the loss function?

get_Z(numpy=True)

Get the Z matrix (the embedding for all data items).

Parameters:

Name Type Description Default
numpy bool

Return the matrix as a numpy (True) or pytorch (False) matrix. Defaults to True.

True

Returns:

Type Description
Union[ndarray, Tensor]

The Z matrix [n, d].

Source code in slisemap/slipmap.py
412
413
414
415
416
417
418
419
420
421
422
def get_Z(self, numpy: bool = True) -> Union[np.ndarray, torch.Tensor]:
    """Get the Z matrix (the embedding for all data items).

    Args:
        numpy: Return the matrix as a numpy (True) or pytorch (False) matrix. Defaults to True.

    Returns:
        The Z matrix `[n, d]`.
    """
    self._normalise()
    return tonp(self._Z) if numpy else self._Z

get_B(numpy=True)

Get the B matrix (the coefficients of the closest local model for all data items).

Parameters:

Name Type Description Default
numpy bool

Return the matrix as a numpy (True) or pytorch (False) matrix. Defaults to True.

True

Returns:

Type Description
Union[ndarray, Tensor]

The B matrix [n, q].

Source code in slisemap/slipmap.py
424
425
426
427
428
429
430
431
432
433
434
def get_B(self, numpy: bool = True) -> Union[np.ndarray, torch.Tensor]:
    """Get the B matrix (the coefficients of the closest local model for all data items).

    Args:
        numpy: Return the matrix as a numpy (True) or pytorch (False) matrix. Defaults to True.

    Returns:
        The B matrix `[n, q]`.
    """
    B = self._Bp[self.get_closest(numpy=False)]
    return tonp(B) if numpy else B

get_Zp(numpy=True)

Get the Zp matrix (the embedding for the prototypes).

Parameters:

Name Type Description Default
numpy bool

Return the matrix as a numpy (True) or pytorch (False) matrix. Defaults to True.

True

Returns:

Type Description
Union[ndarray, Tensor]

The Zp matrix [p, d].

Source code in slisemap/slipmap.py
436
437
438
439
440
441
442
443
444
445
def get_Zp(self, numpy: bool = True) -> Union[np.ndarray, torch.Tensor]:
    """Get the Zp matrix (the embedding for the prototypes).

    Args:
        numpy: Return the matrix as a numpy (True) or pytorch (False) matrix. Defaults to True.

    Returns:
        The Zp matrix `[p, d]`.
    """
    return tonp(self._Zp) if numpy else self._Zp

get_Bp(numpy=True)

Get the Bp matrix (the local model coefficients for the prototypes).

Parameters:

Name Type Description Default
numpy bool

Return the matrix as a numpy (True) or pytorch (False) matrix. Defaults to True.

True

Returns:

Type Description
Union[ndarray, Tensor]

The Bp matrix [p, q].

Source code in slisemap/slipmap.py
447
448
449
450
451
452
453
454
455
456
def get_Bp(self, numpy: bool = True) -> Union[np.ndarray, torch.Tensor]:
    """Get the Bp matrix (the local model coefficients for the prototypes).

    Args:
        numpy: Return the matrix as a numpy (True) or pytorch (False) matrix. Defaults to True.

    Returns:
        The Bp matrix `[p, q]`.
    """
    return tonp(self._Bp) if numpy else self._Bp

get_X(intercept=True, numpy=True)

Get the data matrix.

Parameters:

Name Type Description Default
intercept bool

Include the intercept column (if self.intercept == True). Defaults to True.

True
numpy bool

Return the matrix as a numpy.ndarray instead of a torch.Tensor. Defaults to True.

True

Returns:

Type Description
Union[ndarray, Tensor]

The X matrix [n, m].

Source code in slisemap/slipmap.py
458
459
460
461
462
463
464
465
466
467
468
469
470
471
def get_X(
    self, intercept: bool = True, numpy: bool = True
) -> Union[np.ndarray, torch.Tensor]:
    """Get the data matrix.

    Args:
        intercept: Include the intercept column (if ``self.intercept == True``). Defaults to True.
        numpy: Return the matrix as a numpy.ndarray instead of a torch.Tensor. Defaults to True.

    Returns:
        The X matrix `[n, m]`.
    """
    X = self._X if intercept or not self._intercept else self._X[:, :-1]
    return tonp(X) if numpy else X

get_Y(ravel=False, numpy=True)

Get the target matrix.

Parameters:

Name Type Description Default
ravel bool

Remove the second dimension if it is singular (i.e. turn it into a vector). Defaults to False.

False
numpy bool

Return the matrix as a numpy.ndarray instead of a torch.Tensor. Defaults to True.

True

Returns:

Type Description
Union[ndarray, Tensor]

The Y matrix [n, o].

Source code in slisemap/slipmap.py
473
474
475
476
477
478
479
480
481
482
483
484
485
486
def get_Y(
    self, ravel: bool = False, numpy: bool = True
) -> Union[np.ndarray, torch.Tensor]:
    """Get the target matrix.

    Args:
        ravel: Remove the second dimension if it is singular (i.e. turn it into a vector). Defaults to False.
        numpy: Return the matrix as a numpy.ndarray instead of a torch.Tensor. Defaults to True.

    Returns:
        The Y matrix `[n, o]`.
    """
    Y = self._Y.ravel() if ravel else self._Y
    return tonp(Y) if numpy else Y

get_D(proto_rows=True, proto_cols=False, Z=None, numpy=True)

Get the embedding distance matrix.

Parameters:

Name Type Description Default
proto_rows bool

Calculate the distances with the prototype embeddings on the rows. Defaults to True.

True
proto_cols bool

Calculate the distances with the prototype embeddings on the columns. Defaults to False.

False
Z Optional[Tensor]

Optional replacement for the training Z. Defaults to None.

None
numpy bool

Return the matrix as a numpy (True) or pytorch (False) matrix. Defaults to True.

True

Returns:

Type Description
Union[ndarray, Tensor]

The D matrix [n or p, n or p].

Source code in slisemap/slipmap.py
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
def get_D(
    self,
    proto_rows: bool = True,
    proto_cols: bool = False,
    Z: Optional[torch.Tensor] = None,
    numpy: bool = True,
) -> Union[np.ndarray, torch.Tensor]:
    """Get the embedding distance matrix.

    Args:
        proto_rows: Calculate the distances with the prototype embeddings on the rows. Defaults to True.
        proto_cols: Calculate the distances with the prototype embeddings on the columns. Defaults to False.
        Z: Optional replacement for the training Z. Defaults to None.
        numpy: Return the matrix as a numpy (True) or pytorch (False) matrix. Defaults to True.

    Returns:
        The D matrix `[n or p, n or p]`.
    """
    if proto_rows and proto_cols:
        D = self._distance(self._Zp, self._Zp)
    else:
        Z = self.get_Z(numpy=False) if Z is None else Z
        if proto_rows:
            D = self._distance(self._Zp, Z)
        elif proto_cols:
            D = self._distance(Z, self._Zp)
        else:
            D = self._distance(Z, Z)
    return tonp(D) if numpy else D

get_W(proto_rows=True, proto_cols=False, Z=None, numpy=True)

Get the weight matrix.

Parameters:

Name Type Description Default
proto_rows bool

Calculate the weights with the prototype embeddings on the rows. Defaults to True.

True
proto_cols bool

Calculate the weights with the prototype embeddings on the columns. Defaults to False.

False
Z Optional[Tensor]

Optional replacement for the training Z. Defaults to None.

None
numpy bool

Return the matrix as a numpy.ndarray instead of a torch.Tensor. Defaults to True.

True

Returns:

Type Description
Union[ndarray, Tensor]

The W matrix [n or p, n or p].

Source code in slisemap/slipmap.py
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
def get_W(
    self,
    proto_rows: bool = True,
    proto_cols: bool = False,
    Z: Optional[torch.Tensor] = None,
    numpy: bool = True,
) -> Union[np.ndarray, torch.Tensor]:
    """Get the weight matrix.

    Args:
        proto_rows: Calculate the weights with the prototype embeddings on the rows. Defaults to True.
        proto_cols: Calculate the weights with the prototype embeddings on the columns. Defaults to False.
        Z: Optional replacement for the training Z. Defaults to None.
        numpy: Return the matrix as a numpy.ndarray instead of a torch.Tensor. Defaults to True.

    Returns:
        The W matrix `[n or p, n or p]`.
    """
    D = self.get_D(numpy=False, proto_rows=proto_rows, proto_cols=proto_cols, Z=Z)
    W = self.kernel(D)
    return tonp(W) if numpy else W

get_L(X=None, Y=None, numpy=True)

Get the loss matrix.

Parameters:

Name Type Description Default
X Optional[ToTensor]

Optional replacement for the training X. Defaults to None.

None
Y Optional[ToTensor]

Optional replacement for the training Y. Defaults to None.

None
numpy bool

Return the matrix as a numpy (True) or pytorch (False) matrix. Defaults to True.

True

Returns:

Type Description
Union[ndarray, Tensor]

The L matrix [p, n].

Source code in slisemap/slipmap.py
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
def get_L(
    self,
    X: Optional[ToTensor] = None,
    Y: Optional[ToTensor] = None,
    numpy: bool = True,
) -> Union[np.ndarray, torch.Tensor]:
    """Get the loss matrix.

    Args:
        X: Optional replacement for the training X. Defaults to None.
        Y: Optional replacement for the training Y. Defaults to None.
        numpy: Return the matrix as a numpy (True) or pytorch (False) matrix. Defaults to True.

    Returns:
        The L matrix `[p, n]`.
    """
    X = self._as_new_X(X)
    Y = self._as_new_Y(Y, X.shape[0])
    L = self.local_loss(self.local_model(X, self._Bp), Y)
    return tonp(L) if numpy else L

get_closest(Z=None, numpy=True)

Get the closest prototype for each data item.

Parameters:

Name Type Description Default
Z Optional[Tensor]

Optional replacement for the training Z. Defaults to None.

None
numpy bool

Return the vector as a numpy (True) or pytorch (False) array. Defaults to True.

True

Returns:

Type Description
Union[ndarray, Tensor]

Index vector [n].

Source code in slisemap/slipmap.py
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
def get_closest(
    self, Z: Optional[torch.Tensor] = None, numpy: bool = True
) -> Union[np.ndarray, torch.Tensor]:
    """Get the closest prototype for each data item.

    Args:
        Z: Optional replacement for the training Z. Defaults to None.
        numpy: Return the vector as a numpy (True) or pytorch (False) array. Defaults to True.

    Returns:
        Index vector `[n]`.
    """
    D = self.get_D(numpy=False, Z=Z, proto_rows=True, proto_cols=False)
    index = torch.argmin(D, 0)
    return tonp(index) if numpy else index

tensorargs: Dict[str, Any] property

When creating a new torch.Tensor add these keyword arguments to match the dtype and device of this Slisemap object.

cuda(**kwargs)

Move the tensors to CUDA memory (and run the calculations there).

Note that this resets the random state.

Other Parameters:

Name Type Description
**kwargs Any

Optional arguments to torch.Tensor.cuda

Source code in slisemap/slipmap.py
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
def cuda(self, **kwargs: Any) -> None:
    """Move the tensors to CUDA memory (and run the calculations there).

    Note that this resets the random state.

    Keyword Args:
        **kwargs: Optional arguments to ``torch.Tensor.cuda``
    """
    X = self._X.cuda(**kwargs)
    self._X = X
    self._Y = self._Y.cuda(**kwargs)
    self._Z = self._Z.cuda(**kwargs)
    self._Bp = self._Bp.cuda(**kwargs)
    self._Zp = self._Zp.cuda(**kwargs)
    self._loss = None  # invalidate cached loss function

cpu(**kwargs)

Move the tensors to CPU memory (and run the calculations there).

Note that this resets the random state.

Other Parameters:

Name Type Description
**kwargs Any

Optional arguments to torch.Tensor.cpu

Source code in slisemap/slipmap.py
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
def cpu(self, **kwargs: Any) -> None:
    """Move the tensors to CPU memory (and run the calculations there).

    Note that this resets the random state.

    Keyword Args:
        **kwargs: Optional arguments to ``torch.Tensor.cpu``
    """
    X = self._X.cpu(**kwargs)
    self._X = X
    self._Y = self._Y.cpu(**kwargs)
    self._Z = self._Z.cpu(**kwargs)
    self._Bp = self._Bp.cpu(**kwargs)
    self._Zp = self._Zp.cpu(**kwargs)
    self._loss = None  # invalidate cached loss function

copy()

Make a copy of this Slipmap that references as much of the same torch-data as possible.

Returns An almost shallow copy of this Slipmap object.

Source code in slisemap/slipmap.py
632
633
634
635
636
637
638
639
640
641
642
def copy(self) -> "Slipmap":
    """Make a copy of this Slipmap that references as much of the same torch-data as possible.

    Returns
        An almost shallow copy of this Slipmap object.
    """
    other = copy(self)  # Shallow copy!
    # Deep copy these:
    other._Z = other._Z.clone().detach()
    other._Bp = other._Bp.clone().detach()
    return other

convert(sm, keep_kernel=False, **kwargs) classmethod

Convert a Slisemap object into a Slipmap object.

Parameters:

Name Type Description Default
sm Slisemap

Slisemap object.

required
keep_kernel bool

Use the kernel and distance functions from the Slisemap object. Defaults to False.

False

Other Parameters:

Name Type Description
**kwargs Any

Other parameters forwarded (overriding) to Slipmap.

Returns:

Type Description
Slipmap

Slipmap object for the same data as the Slisemap object.

Source code in slisemap/slipmap.py
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
@classmethod
def convert(
    cls, sm: Slisemap, keep_kernel: bool = False, **kwargs: Any
) -> "Slipmap":
    """Convert a Slisemap object into a Slipmap object.

    Args:
        sm: Slisemap object.
        keep_kernel: Use the kernel and distance functions from the Slisemap object. Defaults to False.

    Keyword Args:
        **kwargs: Other parameters forwarded (overriding) to Slipmap.

    Returns:
        Slipmap object for the same data as the Slisemap object.
    """
    if keep_kernel:
        kwargs.setdefault("kernel", sm.kernel)
        kwargs.setdefault("distance", sm.distance)
    kwargs.setdefault("radius", sm.radius)
    kwargs.setdefault("d", sm.d)
    kwargs.setdefault("lasso", sm.lasso)
    kwargs.setdefault("ridge", sm.ridge)
    kwargs.setdefault("intercept", sm.intercept)
    kwargs.setdefault("local_model", (sm.local_model, sm.local_loss, sm.q))
    kwargs.setdefault("Z0", sm.get_Z(scale=False, rotate=True, numpy=False))
    kwargs.setdefault("jit", sm.jit)
    B = sm.get_B(False)
    sp = Slipmap(
        X=sm.get_X(numpy=False, intercept=False),
        y=sm.get_Y(numpy=False),
        Bp0=B[:1, ...],
        **kwargs,
        **sm.tensorargs,
    )
    D = sp.get_D(numpy=False, proto_rows=True, proto_cols=False)
    sp._Bp[...] = B[torch.argmin(D, 1), ...]
    return sp

into(keep_kernel=False)

Convert a Slipmap object into a Slisemap object.

Parameters:

Name Type Description Default
keep_kernel bool

Use the kernel from the Slipmap object. Defaults to False.

False

Returns:

Type Description
Slisemap

Slisemap object for the same data as the Slipmap object.

Source code in slisemap/slipmap.py
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
def into(self, keep_kernel: bool = False) -> Slisemap:
    """Convert a Slipmap object into a Slisemap object.

    Args:
        keep_kernel: Use the kernel from the Slipmap object. Defaults to False.

    Returns:
        Slisemap object for the same data as the Slipmap object.
    """
    kwargs = {}
    if keep_kernel:
        kwargs["kernel"] = self.kernel
    return Slisemap(
        X=self.get_X(numpy=False, intercept=False),
        y=self.get_Y(numpy=False),
        radius=self.radius,
        d=self.d,
        lasso=self.lasso,
        ridge=self.ridge,
        intercept=self.intercept,
        local_model=self.local_model,
        local_loss=self.local_loss,
        coefficients=self.q,
        distance=self.distance,
        B0=self.get_B(numpy=False),
        Z0=self.get_Z(numpy=False),
        jit=self.jit,
        **{**self.tensorargs, **kwargs},
    )

save(f, any_extension=False, compress=True, **kwargs)

Save the Slipmap object to a file.

This method uses torch.save (which uses pickle for the non-pytorch properties). This means that lambda-functions are not supported (unless a custom pickle module is used, see torch.save).

Note that the random state is not saved, only the initial seed (if set).

The default file extension is ".sp".

Parameters:

Name Type Description Default
f Union[str, PathLike, BinaryIO]

Either a Path-like object or a (writable) File-like object.

required
any_extension bool

Do not check the file extension. Defaults to False.

False
compress Union[bool, int]

Compress the file with LZMA. Either a bool or a compression preset [0, 9]. Defaults to True.

True

Other Parameters:

Name Type Description
**kwargs Any

Parameters forwarded to torch.save.

Source code in slisemap/slipmap.py
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
def save(
    self,
    f: Union[str, PathLike, BinaryIO],
    any_extension: bool = False,
    compress: Union[bool, int] = True,
    **kwargs: Any,
) -> None:
    """Save the Slipmap object to a file.

    This method uses ``torch.save`` (which uses ``pickle`` for the non-pytorch properties).
    This means that lambda-functions are not supported (unless a custom pickle module is used, see ``torch.save``).

    Note that the random state is not saved, only the initial seed (if set).

    The default file extension is ".sp".

    Args:
        f: Either a Path-like object or a (writable) File-like object.
        any_extension: Do not check the file extension. Defaults to False.
        compress: Compress the file with LZMA. Either a bool or a compression preset [0, 9]. Defaults to True.

    Keyword Args:
        **kwargs: Parameters forwarded to ``torch.save``.
    """
    if not any_extension and isinstance(f, (str, PathLike)):  # noqa: SIM102
        if not str(f).endswith(".sp"):
            _warn(
                "When saving Slipmap objects, consider using the '.sp' extension for consistency.",
                Slipmap.save,
            )
    loss = self._loss
    try:
        self.metadata.root = None
        self._Z = self._Z.detach()
        self._Bp = self._Bp.detach()
        self._loss = None
        if isinstance(compress, int) and compress > 0:
            with lzma.open(f, "wb", preset=compress) as f2:
                torch.save(self, f2, **kwargs)
        elif compress:
            with lzma.open(f, "wb") as f2:
                torch.save(self, f2, **kwargs)
        else:
            torch.save(self, f, **kwargs)
    finally:
        self.metadata.root = self
        self._loss = loss

load(f, device=None, map_location=None, **kwargs) classmethod

Load a Slipmap object from a file.

This function uses torch.load, so the tensors are restored to their previous devices. Use device="cpu" to avoid assuming that the same device exists. This is useful if the Slipmap object has been trained on a GPU, but the current computer lacks a GPU.

Note that this is a classmethod, use it with: Slipmap.load(...).

SAFETY: This function is based on torch.load which (by default) uses pickle. Do not use Slipmap.load on untrusted files, since pickle can run arbitrary Python code.

Parameters:

Name Type Description Default
f Union[str, PathLike, BinaryIO]

Either a Path-like object or a (readable) File-like object.

required
device Union[None, str, device]

Device to load the tensors to (or the original if None). Defaults to None.

None
map_location Optional[object]

The same as device (this is the name used by torch.load). Defaults to None.

None

Other Parameters:

Name Type Description
**kwargs Any

Parameters forwarded to torch.load.

Returns:

Type Description
Slipmap

The loaded Slipmap object.

Source code in slisemap/slipmap.py
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
@classmethod
def load(
    cls,
    f: Union[str, PathLike, BinaryIO],
    device: Union[None, str, torch.device] = None,
    map_location: Optional[object] = None,
    **kwargs: Any,
) -> "Slipmap":
    """Load a Slipmap object from a file.

    This function uses ``torch.load``, so the tensors are restored to their previous devices.
    Use ``device="cpu"`` to avoid assuming that the same device exists.
    This is useful if the Slipmap object has been trained on a GPU, but the current computer lacks a GPU.

    Note that this is a classmethod, use it with: ``Slipmap.load(...)``.

    SAFETY: This function is based on `torch.load` which (by default) uses `pickle`.
    Do not use `Slipmap.load` on untrusted files, since `pickle` can run arbitrary Python code.

    Args:
        f: Either a Path-like object or a (readable) File-like object.
        device: Device to load the tensors to (or the original if None). Defaults to None.
        map_location: The same as `device` (this is the name used by `torch.load`). Defaults to None.

    Keyword Args:
        **kwargs: Parameters forwarded to `torch.load`.

    Returns:
        The loaded Slipmap object.
    """
    if device is None:
        device = map_location
    try:
        with lzma.open(f, "rb") as f2:
            sm = torch.load(f2, map_location=device, **kwargs)
    except lzma.LZMAError:
        sm: Slipmap = torch.load(f, map_location=device, **kwargs)
    return sm

value(individual=False, numpy=True)

Calculate the loss value.

Parameters:

Name Type Description Default
individual bool

Give loss individual loss values for the data points. Defaults to False.

False
numpy bool

Return the predictions as a numpy.ndarray instead of torch.Tensor. Defaults to True.

True

Returns:

Type Description
Union[float, ndarray, Tensor]

The loss value(s).

Source code in slisemap/slipmap.py
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
def value(
    self, individual: bool = False, numpy: bool = True
) -> Union[float, np.ndarray, torch.Tensor]:
    """Calculate the loss value.

    Args:
        individual: Give loss individual loss values for the data points. Defaults to False.
        numpy: Return the predictions as a `numpy.ndarray` instead of `torch.Tensor`. Defaults to True.

    Returns:
        The loss value(s).
    """
    loss = self._get_loss_fn(individual)
    loss = loss(X=self._X, Y=self._Y, Z=self._Z, Bp=self._Bp, Zp=self._Zp)
    if individual:
        return tonp(loss) if numpy else loss
    else:
        return loss.cpu().item() if numpy else loss

lbfgs(max_iter=500, verbose=False, *, only_B=False, only_Z=False, **kwargs)

Optimise Slipmap using LBFGS.

Parameters:

Name Type Description Default
max_iter int

Maximum number of LBFGS iterations. Defaults to 500.

500
verbose bool

Print status messages. Defaults to False.

False
only_B bool

Only optimise Bp. Defaults to False.

False
only_Z bool

Only optimise Z. Defaults to False.

False

Other Parameters:

Name Type Description
**kwargs Any

Keyword arguments forwarded to LBFGS.

Returns:

Type Description
float

The loss value.

Source code in slisemap/slipmap.py
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
def lbfgs(
    self,
    max_iter: int = 500,
    verbose: bool = False,
    *,
    only_B: bool = False,
    only_Z: bool = False,
    **kwargs: Any,
) -> float:
    """Optimise Slipmap using LBFGS.

    Args:
        max_iter: Maximum number of LBFGS iterations. Defaults to 500.
        verbose: Print status messages. Defaults to False.
        only_B: Only optimise Bp. Defaults to False.
        only_Z: Only optimise Z. Defaults to False.

    Keyword Args:
        **kwargs: Keyword arguments forwarded to [LBFGS][slisemap.utils.LBFGS].

    Returns:
        The loss value.
    """
    if only_B == only_Z:
        only_B = only_Z = True
    Bp = self._Bp
    Z = self._Z
    if only_B:
        Bp = Bp.clone().requires_grad_(True)
    if only_Z:
        Z = Z.clone().requires_grad_(True)

    loss_ = self._get_loss_fn()
    loss_fn = lambda: loss_(self._X, self._Y, Z, Bp, self._Zp)  # noqa: E731
    pre_loss = loss_fn().cpu().detach().item()

    opt = [Bp] if not only_Z else ([Z] if not only_B else [Z, Bp])
    LBFGS(loss_fn, opt, max_iter=max_iter, verbose=verbose, **kwargs)
    post_loss = loss_fn().cpu().detach().item()

    if post_loss < pre_loss:
        if only_Z:
            self._Z = Z.detach()
            self._normalise()
        if only_B:
            self._Bp = Bp.detach()
        return post_loss
    else:
        if verbose:
            print("Slipmap.lbfgs: No improvement found")
        return pre_loss

escape(lerp=0.9, outliers=True, B_iter=10)

Escape from a local optimum by moving each data item embedding towards the most suitable prototype embedding.

Parameters:

Name Type Description Default
lerp float

Linear interpolation between the old (0.0) and the new (1.0) embedding position. Defaults to 0.9.

0.9
outliers bool

Check for and reset embeddings outside the prototype grid. Defaults to True.

True
B_iter int

Optimise B for B_iter number of LBFGS iterations. Set B_iter=0 to disable. Defaults to 10.

10
Source code in slisemap/slipmap.py
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
def escape(
    self, lerp: float = 0.9, outliers: bool = True, B_iter: int = 10
) -> None:
    """Escape from a local optimum by moving each data item embedding towards the most suitable prototype embedding.

    Args:
        lerp: Linear interpolation between the old (0.0) and the new (1.0) embedding position. Defaults to 0.9.
        outliers: Check for and reset embeddings outside the prototype grid. Defaults to True.
        B_iter: Optimise B for `B_iter` number of LBFGS iterations. Set `B_iter=0` to disable. Defaults to 10.
    """
    if lerp <= 0.0:
        _warn("Escaping with `lerp <= 0` does nothing!", Slipmap.escape)
        return
    L = self.get_L(numpy=False)
    W = self.get_W(numpy=False, proto_rows=True, proto_cols=True)
    index = torch.argmin(W @ L, 0)
    if lerp >= 1.0:
        self._Z = self._Zp[index].clone()
    else:
        if outliers:  # Check for and reset outliers in the embedding
            scale = torch.sum(self._Z**2, 1)
            radius = torch.max(torch.sum(self._Zp**2, 1))
            if torch.any(scale >= radius):
                self._Z[scale >= radius] = 0.0
        self._Z = (1.0 - lerp) * self._Z + lerp * self._Zp[index]
    self._normalise()
    if B_iter > 0:
        self.lbfgs(max_iter=B_iter, only_B=True)

optimize(patience=2, max_escapes=100, max_iter=500, only_B=False, verbose=0, escape_kws={}, **kwargs)

Optimise Slipmap by alternating between Slipmap.lbfgs and Slipmap.escape until convergence.

Statistics for the optimisation can be found in self.metadata["optimize_time"] and self.metadata["optimize_loss"].

Parameters:

Name Type Description Default
patience int

Number of escapes without improvement before stopping. Defaults to 2.

2
max_escapes int

aximum numbers optimisation rounds. Defaults to 100.

100
max_iter int

Maximum number of LBFGS iterations per round. Defaults to 500.

500
only_B bool

Only optimise the local models, not the embedding. Defaults to False.

False
verbose Literal[0, 1, 2]

Print status messages (0: no, 1: some, 2: all). Defaults to 0.

0
escape_kws Dict[str, object]

Optional keyword arguments to Slipmap.escape. Defaults to {}.

{}

Other Parameters:

Name Type Description
**kwargs Any

Keyword arguments forwaded to Slipmap.lbfgs.

Returns:

Type Description
float

The loss value.

Source code in slisemap/slipmap.py
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
def optimize(
    self,
    patience: int = 2,
    max_escapes: int = 100,
    max_iter: int = 500,
    only_B: bool = False,
    verbose: Literal[0, 1, 2] = 0,
    escape_kws: Dict[str, object] = {},
    **kwargs: Any,
) -> float:
    """Optimise Slipmap by alternating between [Slipmap.lbfgs][slisemap.slipmap.Slipmap.lbfgs] and [Slipmap.escape][slisemap.slipmap.Slipmap.escape] until convergence.

    Statistics for the optimisation can be found in `self.metadata["optimize_time"]` and `self.metadata["optimize_loss"]`.

    Args:
        patience: Number of escapes without improvement before stopping. Defaults to 2.
        max_escapes: aximum numbers optimisation rounds. Defaults to 100.
        max_iter: Maximum number of LBFGS iterations per round. Defaults to 500.
        only_B: Only optimise the local models, not the embedding. Defaults to False.
        verbose: Print status messages (0: no, 1: some, 2: all). Defaults to 0.
        escape_kws: Optional keyword arguments to `Slipmap.escape`. Defaults to {}.

    Keyword Args:
        **kwargs: Keyword arguments forwaded to `Slipmap.lbfgs`.

    Returns:
        The loss value.
    """
    loss = np.repeat(np.inf, 2)
    time = timer()
    loss[0] = self.lbfgs(
        max_iter=max_iter,
        only_B=True,
        increase_tolerance=not only_B,
        verbose=verbose > 1,
        **kwargs,
    )
    history = [loss[0]]
    if verbose:
        i = 0
        print(f"Slipmap.optimise LBFGS  {0:2d}: {loss[0]:.2f}")
    if only_B:
        self.metadata["optimize_time"] = timer() - time
        self.metadata["optimize_loss"] = history
        return loss[0]
    cc = CheckConvergence(patience, max_escapes)
    while not cc.has_converged(loss, self.copy, verbose=verbose > 1):
        self.escape(**escape_kws)
        loss[1] = self.value()
        if verbose:
            print(f"Slipmap.optimise Escape {i:2d}: {loss[1]:.2f}")
        loss[0] = self.lbfgs(
            max_iter, increase_tolerance=True, verbose=verbose > 1, **kwargs
        )
        history.append(loss[1])
        history.append(loss[0])
        if verbose:
            i += 1
            print(f"Slipmap.optimise LBFGS  {i:2d}: {loss[0]:.2f}")
    self._Z = cc.optimal._Z
    self._Bp = cc.optimal._Bp
    loss = self.lbfgs(
        max_iter * 2, increase_tolerance=False, verbose=verbose > 1, **kwargs
    )
    history.append(loss)
    self.metadata["optimize_time"] = timer() - time
    self.metadata["optimize_loss"] = history
    if verbose:
        print(f"Slipmap.optimise Final    : {loss:.2f}")
    return loss

predict(X, weighted=True, numpy=True)

Predict the outcome for new data items.

This function uses the nearest neighbour in X space to find the embedding. Then the prediction is made with the local model (of the closest prototype).

Parameters:

Name Type Description Default
X ToTensor

Data matrix.

required
weighted bool

Use a weighted model instead of just the nearest. Defaults to True

True
numpy bool

Return the predictions as a numpy.ndarray instead of torch.Tensor. Defaults to True.

True

Returns:

Type Description
Union[ndarray, Tensor]

Predicted Y:s.

Source code in slisemap/slipmap.py
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
def predict(
    self,
    X: ToTensor,
    weighted: bool = True,
    numpy: bool = True,
) -> Union[np.ndarray, torch.Tensor]:
    """Predict the outcome for new data items.

    This function uses the nearest neighbour in X space to find the embedding.
    Then the prediction is made with the local model (of the closest prototype).

    Args:
        X: Data matrix.
        weighted: Use a weighted model instead of just the nearest. Defaults to True
        numpy: Return the predictions as a `numpy.ndarray` instead of `torch.Tensor`. Defaults to True.

    Returns:
        Predicted Y:s.
    """
    X = self._as_new_X(X)
    xnn = torch.cdist(X, self._X).argmin(1)
    if weighted:
        Y = self.local_model(X, self._Bp)
        D = self.get_D(True, False, numpy=False)[:, xnn]
        W = softmax_column_kernel(D)
        Y = torch.sum(W[..., None] * Y, 0)
    else:
        B = self.get_B(False)[xnn, :]
        Y = local_predict(X, B, self.local_model)
    return tonp(Y) if numpy else Y

get_model_clusters(clusters, B=None, Z=None, random_state=42, **kwargs)

Cluster the local model coefficients using k-means (from scikit-learn).

This method (with a fixed random seed) is used for plotting Slipmap solutions.

Parameters:

Name Type Description Default
clusters int

Number of clusters.

required
B Optional[ndarray]

B matrix. Defaults to self.get_B().

None
Z Optional[ndarray]

Z matrix. Defaults to self.get_Z().

None
random_state int

random_state for the KMeans clustering. Defaults to 42.

42

Other Parameters:

Name Type Description
**kwargs Any

Additional arguments to sklearn.cluster.KMeans or sklearn.cluster.MiniBatchKMeans if self.n >= 1024.

Returns:

Name Type Description
labels ndarray

Vector of cluster labels.

centres ndarray

Matrix of cluster centres.

Source code in slisemap/slipmap.py
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
def get_model_clusters(
    self,
    clusters: int,
    B: Optional[np.ndarray] = None,
    Z: Optional[np.ndarray] = None,
    random_state: int = 42,
    **kwargs: Any,
) -> Tuple[np.ndarray, np.ndarray]:
    """Cluster the local model coefficients using k-means (from scikit-learn).

    This method (with a fixed random seed) is used for plotting Slipmap solutions.

    Args:
        clusters: Number of clusters.
        B: B matrix. Defaults to `self.get_B()`.
        Z: Z matrix. Defaults to `self.get_Z()`.
        random_state: random_state for the KMeans clustering. Defaults to 42.

    Keyword Args:
        **kwargs: Additional arguments to `sklearn.cluster.KMeans` or `sklearn.cluster.MiniBatchKMeans` if `self.n >= 1024`.

    Returns:
        labels: Vector of cluster labels.
        centres: Matrix of cluster centres.
    """
    B = B if B is not None else self.get_B()
    Z = Z if Z is not None else self.get_Z()
    with warnings.catch_warnings():
        warnings.simplefilter("ignore", FutureWarning)
        # Some sklearn versions warn about changing defaults for KMeans
        kwargs.setdefault("random_state", random_state)
        if self.n >= 1024:
            km = MiniBatchKMeans(clusters, **kwargs).fit(B)
        else:
            km = KMeans(clusters, **kwargs).fit(B)
    ord = np.argsort([Z[km.labels_ == k, 0].mean() for k in range(clusters)])
    return np.argsort(ord)[km.labels_], km.cluster_centers_[ord]

plot(title='', clusters=None, bars=True, jitter=0.0, show=True, bar=None, **kwargs)

Plot the Slipmap solution using seaborn.

Parameters:

Name Type Description Default
title str

Title of the plot. Defaults to "".

''
clusters Union[None, int, ndarray]

Can be None (plot individual losses), an int (plot k-means clusters of Bp), or an array of known cluster id:s. Defaults to None.

None
bars Union[bool, int, Sequence[str]]

If clusters is not None, plot the local models in a bar plot. If bar is an int then only plot the most influential variables. Defaults to True.

True
jitter Union[float, ndarray]

Add random (normal) noise to the embedding, or a matrix with pre-generated noise matching Z. Defaults to 0.0.

0.0
show bool

Show the plot. Defaults to True.

True
bar Union[None, bool, int]

Alternative spelling for bars. Defaults to None.

None

Other Parameters:

Name Type Description
**kwargs Any

Additional arguments to plot_solution and plt.subplots.

Returns:

Type Description
Optional[Figure]

Matplotlib figure if show=False.

Source code in slisemap/slipmap.py
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
def plot(
    self,
    title: str = "",
    clusters: Union[None, int, np.ndarray] = None,
    bars: Union[bool, int, Sequence[str]] = True,
    jitter: Union[float, np.ndarray] = 0.0,
    show: bool = True,
    bar: Union[None, bool, int] = None,
    **kwargs: Any,
) -> Optional[Figure]:
    """Plot the Slipmap solution using seaborn.

    Args:
        title: Title of the plot. Defaults to "".
        clusters: Can be None (plot individual losses), an int (plot k-means clusters of Bp), or an array of known cluster id:s. Defaults to None.
        bars: If `clusters is not None`, plot the local models in a bar plot. If ``bar`` is an int then only plot the most influential variables. Defaults to True.
        jitter: Add random (normal) noise to the embedding, or a matrix with pre-generated noise matching Z. Defaults to 0.0.
        show: Show the plot. Defaults to True.
        bar: Alternative spelling for `bars`. Defaults to None.

    Keyword Args:
        **kwargs: Additional arguments to [plot_solution][slisemap.plot.plot_solution] and `plt.subplots`.

    Returns:
        Matplotlib figure if `show=False`.
    """
    if bar is not None:
        bars = bar
    B = self.get_B()
    Z = self.get_Z()
    if clusters is None:
        loss = tonp(self.local_loss(self.predict(self._X, numpy=False), self._Y))
        clusters = None
        centers = None
    else:
        loss = None
        if isinstance(clusters, int):
            clusters, centers = self.get_model_clusters(clusters, B, Z)
        else:
            clusters = np.asarray(clusters)
            centers = np.stack(
                [np.mean(B[clusters == c, :], 0) for c in np.unique(clusters)], 0
            )
    fig = plot_solution(
        Z=Z,
        B=B,
        loss=loss,
        clusters=clusters,
        centers=centers,
        coefficients=self.metadata.get_coefficients(),
        dimensions=self.metadata.get_dimensions(long=True),
        title=title,
        bars=bars,
        jitter=jitter,
        **kwargs,
    )
    plot_prototypes(self.get_Zp(), fig.axes[0])
    if show:
        plt.show()
    else:
        return fig

plot_position(X=None, Y=None, index=None, title='', jitter=0.0, legend_inside=True, show=True, **kwargs)

Plot local losses for alternative locations for the selected item(s).

Indicate the selected item(s) either via X and Y or via index.

Parameters:

Name Type Description Default
X Optional[ToTensor]

Data matrix for the selected data item(s). Defaults to None.

None
Y Optional[ToTensor]

Response matrix for the selected data item(s). Defaults to None.

None
index Union[None, int, Sequence[int]]

Index/indices of the selected data item(s). Defaults to None.

None
title str

Title of the plot. Defaults to "".

''
jitter Union[float, ndarray]

Add random (normal) noise to the embedding, or a matrix with pre-generated noise matching Z. Defaults to 0.0.

0.0
legend_inside bool

Move the legend inside the grid (if there is an empty cell). Defaults to True.

True
show bool

Show the plot. Defaults to True.

True

Other Parameters:

Name Type Description
**kwargs Any

Additional arguments to seaborn.relplot.

Returns:

Type Description
Optional[FacetGrid]

seaborn.FacetGrid if show=False.

Source code in slisemap/slipmap.py
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
def plot_position(
    self,
    X: Optional[ToTensor] = None,
    Y: Optional[ToTensor] = None,
    index: Union[None, int, Sequence[int]] = None,
    title: str = "",
    jitter: Union[float, np.ndarray] = 0.0,
    legend_inside: bool = True,
    show: bool = True,
    **kwargs: Any,
) -> Optional[sns.FacetGrid]:
    """Plot local losses for alternative locations for the selected item(s).

    Indicate the selected item(s) either via `X` and `Y` or via `index`.

    Args:
        X: Data matrix for the selected data item(s). Defaults to None.
        Y: Response matrix for the selected data item(s). Defaults to None.
        index: Index/indices of the selected data item(s). Defaults to None.
        title: Title of the plot. Defaults to "".
        jitter: Add random (normal) noise to the embedding, or a matrix with pre-generated noise matching Z. Defaults to 0.0.
        legend_inside: Move the legend inside the grid (if there is an empty cell). Defaults to True.
        show: Show the plot. Defaults to True.

    Keyword Args:
        **kwargs: Additional arguments to `seaborn.relplot`.

    Returns:
        `seaborn.FacetGrid` if `show=False`.
    """
    if index is None:
        _assert(
            X is not None and Y is not None,
            "Either index or X and Y must be given",
            Slipmap.plot_position,
        )
        L = self.get_L(X=X, Y=Y)
    else:
        if isinstance(index, int):
            index = [index]
        L = self.get_L()[:, index]
    g = plot_position(
        Z=self.get_Zp(),
        L=L,
        Zs=self.get_Z()[index, :] if index is not None else None,
        dimensions=self.metadata.get_dimensions(long=True),
        title=title,
        jitter=jitter,
        legend_inside=legend_inside,
        marker_size=6.0,
        **kwargs,
    )
    # plot_prototypes(self.get_Zp(), *g.axes.flat)
    if show:
        plt.show()
    else:
        return g

plot_dist(title='', clusters=None, unscale=True, scatter=False, jitter=0.0, legend_inside=True, show=True, **kwargs)

Plot the distribution of the variables, either as density plots (with clusters) or as scatterplots.

Parameters:

Name Type Description Default
title str

Title of the plot. Defaults to "".

''
clusters Union[None, int, ndarray]

Number of cluster or vector of cluster labels. Defaults to None.

None
scatter bool

Use scatterplots instead of density plots (clusters are ignored). Defaults to False.

False
unscale bool

Unscale X and Y if scaling metadata has been given (see Slisemap.metadata.set_scale_X). Defaults to True.

True
jitter float

Add jitter to the scatterplots. Defaults to 0.0.

0.0
legend_inside bool

Move the legend inside the grid (if there is an empty cell). Defaults to True.

True
show bool

Show the plot. Defaults to True.

True

Other Parameters:

Name Type Description
**kwargs Any

Additional arguments to seaborn.relplot or seaborn.scatterplot.

Returns:

Type Description
Optional[FacetGrid]

seaborn.FacetGrid if show=False.

Source code in slisemap/slipmap.py
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
def plot_dist(
    self,
    title: str = "",
    clusters: Union[None, int, np.ndarray] = None,
    unscale: bool = True,
    scatter: bool = False,
    jitter: float = 0.0,
    legend_inside: bool = True,
    show: bool = True,
    **kwargs: Any,
) -> Optional[sns.FacetGrid]:
    """Plot the distribution of the variables, either as density plots (with clusters) or as scatterplots.

    Args:
        title: Title of the plot. Defaults to "".
        clusters: Number of cluster or vector of cluster labels. Defaults to None.
        scatter: Use scatterplots instead of density plots (clusters are ignored). Defaults to False.
        unscale: Unscale `X` and `Y` if scaling metadata has been given (see `Slisemap.metadata.set_scale_X`). Defaults to True.
        jitter: Add jitter to the scatterplots. Defaults to 0.0.
        legend_inside: Move the legend inside the grid (if there is an empty cell). Defaults to True.
        show: Show the plot. Defaults to True.

    Keyword Args:
        **kwargs: Additional arguments to `seaborn.relplot` or `seaborn.scatterplot`.

    Returns:
        `seaborn.FacetGrid` if `show=False`.
    """
    X = self.get_X(intercept=False)
    Y = self.get_Y()
    if unscale:
        X = self.metadata.unscale_X(X)
        Y = self.metadata.unscale_Y(Y)
    loss = tonp(self.local_loss(self.predict(self._X, numpy=False), self._Y))
    if isinstance(clusters, int):
        clusters, _ = self.get_model_clusters(clusters)
    g = plot_dist(
        X=X,
        Y=Y,
        Z=self.get_Z(),
        loss=loss,
        variables=self.metadata.get_variables(False),
        targets=self.metadata.get_targets(),
        dimensions=self.metadata.get_dimensions(long=True),
        title=title,
        clusters=clusters,
        scatter=scatter,
        jitter=jitter,
        legend_inside=legend_inside,
        **kwargs,
    )
    if scatter:
        plot_prototypes(self.get_Zp(), *g.axes.flat)
    if show:
        plt.show()
    else:
        return g