slisemap.escape
Module that contains alternative escape heuristics.
escape_neighbourhood(X, Y, B, Z, local_model, local_loss, distance, kernel, radius=3.5, force_move=False, **_)
Try to escape a local optimum by moving the data items.
Move the data items to the neighbourhoods (embedding and local model) best suited for them. This is done by finding another item (in the optimal neighbourhood) and copying its values for Z and B.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
X |
Tensor
|
Data matrix. |
required |
Y |
Tensor
|
Target matrix. |
required |
B |
Tensor
|
Local models. |
required |
Z |
Tensor
|
Embedding matrix. |
required |
local_model |
Callable[[Tensor, Tensor], Tensor]
|
Prediction function for the local models. |
required |
local_loss |
Callable[[Tensor, Tensor], Tensor]
|
Loss function for the local models. |
required |
distance |
Callable[[Tensor, Tensor], Tensor]
|
Embedding distance function. |
required |
kernel |
Callable[[Tensor], Tensor]
|
Kernel for embedding distances. |
required |
radius |
float
|
For enforcing the radius of Z. Defaults to 3.5. |
3.5
|
force_move |
bool
|
Do not allow the items to pair with themselves. Defaults to True. |
False
|
Returns:
Name | Type | Description |
---|---|---|
B |
Tensor
|
Escaped |
Z |
Tensor
|
Escaped |
Source code in slisemap/escape.py
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 |
|
escape_greedy(X, Y, B, Z, local_model, local_loss, distance, kernel, radius=3.5, force_move=False, **_)
Try to escape a local optimum by moving the data items.
Move the data items to a locations with optimal local models. This is done by finding another item (with an optimal local model) and copying its values for Z and B.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
X |
Tensor
|
Data matrix. |
required |
Y |
Tensor
|
Target matrix. |
required |
B |
Tensor
|
Local models. |
required |
Z |
Tensor
|
Embedding matrix. |
required |
local_model |
Callable[[Tensor, Tensor], Tensor]
|
Prediction function for the local models. |
required |
local_loss |
Callable[[Tensor, Tensor], Tensor]
|
Loss function for the local models. |
required |
distance |
Callable[[Tensor, Tensor], Tensor]
|
Embedding distance function. |
required |
kernel |
Callable[[Tensor], Tensor]
|
Kernel for embedding distances. |
required |
radius |
float
|
For enforcing the radius of Z. Defaults to 3.5. |
3.5
|
force_move |
bool
|
Do not allow the items to pair with themselves. Defaults to True. |
False
|
Returns:
Name | Type | Description |
---|---|---|
B |
Tensor
|
Escaped |
Z |
Tensor
|
Escaped |
Source code in slisemap/escape.py
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 |
|
escape_combined(X, Y, B, Z, local_model, local_loss, distance, kernel, radius=3.5, force_move=False, **_)
Try to escape a local optimum by moving the data items.
Move the data items to the neighbourhoods (embedding and local model) best suited for them. This is done by finding another item (in the optimal neighbourhood) and copying its values for Z and B.
This is a combination of escape_neighbourhood and escape_greedy.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
X |
Tensor
|
Data matrix. |
required |
Y |
Tensor
|
Target matrix. |
required |
B |
Tensor
|
Local models. |
required |
Z |
Tensor
|
Embedding matrix. |
required |
local_model |
Callable[[Tensor, Tensor], Tensor]
|
Prediction function for the local models. |
required |
local_loss |
Callable[[Tensor, Tensor], Tensor]
|
Loss function for the local models. |
required |
distance |
Callable[[Tensor, Tensor], Tensor]
|
Embedding distance function. |
required |
kernel |
Callable[[Tensor], Tensor]
|
Kernel for embedding distances. |
required |
radius |
float
|
For enforcing the radius of Z. Defaults to 3.5. |
3.5
|
force_move |
bool
|
Do not allow the items to pair with themselves. Defaults to True. |
False
|
Returns:
Name | Type | Description |
---|---|---|
B |
Tensor
|
Escaped |
Z |
Tensor
|
Escaped |
Source code in slisemap/escape.py
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 |
|
escape_marginal(X, Y, B, Z, local_model, local_loss, distance, kernel, radius=3.5, force_move=False, Xold=None, Yold=None, jit=True, **_)
Try to escape a local optimum by moving the data items.
Move the data items to locations with optimal marginal losses. This is done by finding another item (where the marginal loss is optimal) and copying its values for Z and B.
This might produce better results than escape_neighbourhood
, but is really slow.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
X |
Tensor
|
Data matrix. |
required |
Y |
Tensor
|
Target matrix. |
required |
B |
Tensor
|
Local models. |
required |
Z |
Tensor
|
Embedding matrix. |
required |
local_model |
Callable[[Tensor, Tensor], Tensor]
|
Prediction function for the local models. |
required |
local_loss |
Callable[[Tensor, Tensor], Tensor]
|
Loss function for the local models. |
required |
distance |
Callable[[Tensor, Tensor], Tensor]
|
Embedding distance function. |
required |
kernel |
Callable[[Tensor], Tensor]
|
Kernel for embedding distances. |
required |
radius |
float
|
For enforcing the radius of Z. Defaults to 3.5. |
3.5
|
force_move |
bool
|
Do not allow the items to pair with themselves. Defaults to True. |
False
|
jit |
bool
|
Just-In-Time compile the loss function. Defaults to True. |
True
|
Xold |
Optional[Tensor]
|
Trained X. Defaults to X. |
None
|
Yold |
Optional[Tensor]
|
Trained Y. Defaults to Y. |
None
|
Returns:
Name | Type | Description |
---|---|---|
B |
Tensor
|
Escaped |
Z |
Tensor
|
Escaped |
Source code in slisemap/escape.py
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 |
|