Initialise the graduated optimisation with an "Ordinary Least Squares" solution
Source:R/initialisation.R
slise_initialisation_ols.Rd
Initialise the graduated optimisation with an "Ordinary Least Squares" solution
Usage
slise_initialisation_ols(
X,
Y,
epsilon,
weight = NULL,
beta_max = 20/epsilon^2,
max_approx = 1.15,
max_iterations = 300,
beta_max_init = 2.5/epsilon^2,
...
)
Arguments
- X
data matrix
- Y
response vector
- epsilon
error tolerance
- weight
weight vector (default: NULL)
- beta_max
the maximum starting sigmoid steepness (default: 20/epsilon^2)
- max_approx
the target approximation ratio (default: 1.15)
- max_iterations
if ncol(X) is huge, then ols is replaced with optimisation (default:300)
- beta_max_init
the maximum sigmoid steepness in the initialisation
- ...
unused parameters