Initialise the graduated optimisation by sampling candidates
Source:R/initialisation.R
slise_initialisation_candidates2.Rd
The procedure starts with creating num_init subsets of size d. For each subset a linear model is fitted and the model that has the smallest loss is selected.
Usage
slise_initialisation_candidates2(
X,
Y,
epsilon,
weight = NULL,
beta_max = 20/epsilon^2,
max_approx = 1.15,
num_init = 500,
beta_max_init = 2.5/epsilon^2,
max_iterations = 300,
...
)
Arguments
- X
data matrix
- Y
response vector
- epsilon
error tolerance
- weight
weight vector (default: NULL)
- beta_max
the maximum sigmoid steepness (default: 20/epsilon^2)
- max_approx
the target approximation ratio (default: 1.15)
- num_init
the number of initial subsets to generate (default: 400)
- beta_max_init
the maximum sigmoid steepness in the initialisation
- max_iterations
if ncol(X) is huge, then ols is replaced with optimisation (default:300)
- ...
unused parameters