Preprocess the data as necessary before running SLISE
Usage
slise.preprocess(
X,
Y,
epsilon,
x = NULL,
y = NULL,
lambda1 = 0,
lambda2 = 0,
weight = NULL,
intercept = FALSE,
normalise = FALSE,
logit = FALSE
)
Arguments
- X
Matrix of independent variables
- Y
Vector of the target variable
- epsilon
Error tolerance
- x
The sample to be explained (or index if y is null)
- y
The prediction to be explained (default: NULL)
- lambda1
L1 regularisation coefficient (default: 0)
- lambda2
L2 regularisation coefficient (default: 0)
- weight
Optional weight vector (default: NULL)
- intercept
Should an intercept be added (default: TRUE)
- normalise
Preprocess X and Y by scaling, note that epsilon is not scaled (default: FALSE)
- logit
Logit transform Y from probabilities to real values (default: FALSE)